2018.10.31 vijos1052贾老二算算术(高斯消元)
传送门
高斯消元模板题。
写的时候反了sbsbsb错误消元的时候除数和被除数反了。
所以把板子贴上来压压惊。
代码:
#include<bits/stdc++.h>
using namespace std;
inline int read(){
int ans=0,w=1;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans*w;
}
const int N=105;
int n;
double a[N][N],ans[N];
int main(){
n=read();
for(int i=1;i<=n;++i)for(int j=1;j<=n+1;++j)a[i][j]=read();
for(int i=1;i<=n;++i){
int tmp=i;
for(int j=i+1;j<=n;++j)if(fabs(a[j][i])>fabs(a[tmp][i]))tmp=j;
if(tmp^i)swap(a[tmp],a[i]);
for(int j=i+1;j<=n;++j){
double tmp=a[j][i]/a[i][i];
for(int k=1;k<=n+1;++k)a[j][k]-=a[i][k]*tmp;
}
}
for(int i=n;i;--i){
ans[i]=a[i][n+1]/a[i][i];
for(int j=i-1;j;--j)a[j][n+1]-=a[j][i]*ans[i];
}
for(int i=1;i<=n;++i)printf("%d ",(int)(ans[i]+0.5));
return 0;
}
2018.10.31 vijos1052贾老二算算术(高斯消元)的更多相关文章
- VIJOS 1052贾老二算算术 (高斯消元)
描述 贾老二是个品学兼优的好学生,但由于智商问题,算术学得不是很好,尤其是在解方程这个方面.虽然他解决 2x=2 这样的方程游刃有余,但是对于 {x+y=3 x-y=1} 这样的方程组就束手无策了.于 ...
- 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元
题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...
- Luogu1092 NOIP2004虫食算(搜索+高斯消元)
暴力枚举每一位是否进位,然后就可以高斯消元解出方程了.然而复杂度是O(2nn3),相当不靠谱. 考虑优化.注意到某一位进位情况的变化只会影响到方程的常数项,于是可以在最开始做一次高斯消元算出每个未知数 ...
- 2018.10.31 NOIP模拟 几串字符(数位dp+组合数学)
传送门 如果观察到性质其实也不是很难想. 然而考试的时候慌得一批只有心思写暴力233. 下面是几个很有用的性质: c0,1+1≥c1,0≥c0,1c_{0,1 }+1 ≥ c_{1,0} ≥ c_{0 ...
- [文章汇总]ASP.NET Core框架揭秘[最近更新:2018/10/31]
之前一段时间都在个人公众号账号“大内老A”发布关于ASP.NET Core的系列文章,很多人留言希望能够同步到这里,所以在这里 对这些文章做一个汇总,以便于PC端阅读.如果说微软官方文档主要关于ASP ...
- it's time to change myself now (2018.10.31)
自16年从新屋熊职校毕业,入职深圳某厂从事云存储两年半了.两年半的时间很快,快的感觉一生都会飞快,两年多一直很忙,忙的几乎忘了自己是否正向改变过. 正向改变,or 积极改变,今年十一回家,与几个好友小 ...
- Unity进阶----AssetBundle_02(加载依赖关系及网络资源)(2018/10/31)
网络资源加载: string path ="file://"+ Application.streamingAssetsPath + "\\windows\\123&quo ...
- 2018.10.31 NOIP训练 锻造(方程式期望入门题)(期望dp)
传送门 根据题目列出方程: fi=pi∗(fi−1+fi−2)+(1−pi)∗(fi+1+fi)f_i=p_i*(f_{i-1}+f_{i-2})+(1-p_i)*(f_{i+1}+f_i)fi=p ...
- 2018.10.31 bzoj4737: 组合数问题(lucas定理+容斥原理+数位dp)
传送门 这是一道让我重新认识lucaslucaslucas的题. 考虑到lucaslucaslucas定理: (nm)≡(n%pm%p)∗(npmp)\binom n m \equiv \binom ...
随机推荐
- 【转】微信公众号h5网页被嵌入广告 不知道什么原因
这个是因为http劫持导致的.HTTP劫持是在使用者与其目的网络服务所建立的专用数据通道中,监视特定数据信息,提示当满足设定的条件时,就会在正常的数据流中插入精心设计的网络数据报文,目的是让用户端程序 ...
- Java07-java语法基础(六)面向对象
Java07-java语法基础(六)面向对象 一.格式化输出 System.out.printf(“%格式字符”,输出项); 1.格式字符: d --->int.byte.short ld -- ...
- 大话listview之设置item监听器无效大坑之一:item设了属性clickable
今天一个listview设置item监听器居然没有作用: 看了半天,怀疑是item设置了这个属性, 于是删了,果然就可以了. 大坑 ...
- certificate verify failed (https://gems.ruby-china.org/specs.4.8.gz)
redis集群配置中 >gem sources -a https://ruby.taobao.org/ Error fetching https://gems.ruby-china.org/: ...
- 在Eclipse中安装python插件的方法
一个博士给了我一堆代码,原本以为是C++或者java写的,结果是python,我压根没学过呀,不过本着语言都是相通的原则,我硬着头皮开始学习Python,当然先学习安装IDE(以前学习一门新语言,我会 ...
- cmake 添加头文件目录,链接动态、静态库
罗列一下cmake常用的命令. CMake支持大写.小写.混合大小写的命令. 1. 添加头文件目录INCLUDE_DIRECTORIES 语法: include_directories([AFTER| ...
- 模块二 hashlib模块、configparser模块、logging模块
算法介绍 Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常 ...
- jQuery 实例
选择器 $(this).hide() 隐藏当前的 HTML 元素. $("p").hide() 隐藏所有 <p> 元素. $(".test").hi ...
- VS2013一次替换变量名
插件下载地址:https://visualstudiogallery.msdn.microsoft.com/164904b2-3b47-417f-9b6b-fdd35757d194 该插件目前只支持: ...
- andorid 手机外部储存
.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android ...