Prufer codes与Generalized Cayley's Formula
Prufer序列
在一棵n个节点带标号树中,我们认为度数为1的点为叶子。n个点的树的Prufer序列是经过下面流程得到的一个长度为n-2的序列。
1.若当前树中只剩下两个点,退出,否则执行2。
2.找到树中编号最小的节点,将与它相连的那个点的编号加入Prufer序列的末尾,并将这个叶子删除。返回1。
显然,每棵树都唯一对应一个Prufer序列,而每个Prufer序列也唯一对应一棵树。可以通过一下流程得到这棵树。
1.令A={1,2,...,n},不断重复2直到Prufer序列为空。
2.找到A中最小的不在Prufer序列中的点,将其与Prufer序列首元素连边,然后同时删除这个点与序列首元素。
3.此时A中还剩下两个点,将这两个点连边。
根据以上流程,不难发现:若点i在树中的度数为a[i],则它在Prufer序列中会出现a[i]-1次。
Cayley's Formula
Prufer序列中的每个元素都可以从1取到n,且每种方案会唯一对应一棵带标号无根树。
所以,由于Prufer序列共有$n^{n-2}$个,n个点的带标号无根树就有$n^{n-2}$种。
拓展:
1.显然,n个点的带标号有根树有$n^{n-2}$种。
2.当树中每个点的度数$a_i$都已经确定后,由Prufer序列得,满足条件的树共有$\frac{(n-2)!}{\prod a_i!}$种。
例题:BZOJ1005,BZOJ1211,BZOJ1430
Generalized Cayley's Formula
已知n,k,求f(n,m)表示n个点组成的共有m棵树的森林,且1,2,...,m分别属于不同的树,的方案数。
先给出结论:$f(n,m)=m\cdot n^{n-m-1}$。
(显然可以发现$f(n,1)=n^{n-2}$)
证明:
显然,$f(1,1)=0$,$f(n,0)=0(n\geq 1)$。
数学归纳,假设对于所有$i<n$的$f(i,j)$都已证明。
考虑1号点属于的那棵树,枚举1号点的度数i,则删除后这张图会变成n-1个点,m+i-1棵树。
$f(n,m)=\sum\limits_{i=0}^{n-m}\binom{n-m}{i}f(n-1,m+i-1)$
将原式代入,有$f(n,m)=\sum\limits_{i=0}^{n-m}\binom{n-m}{i}(m+i-1)(n-1)^{n-m-i-1}=mn^{n-m-1}$
命题得证。
拓展:
显然n个点组成有根树森林的方案为$\sum\limits_{k=1}^{n}n^{n-k-1}\times k\times \binom{n}{k}$
应用:CF1109D
给定n,m,a,b,求有多少个n个点的带标号无根树,满足所有边权在[1,m]中,且a到b的简单路径长度为m。
显然枚举a,b中的边数,那么a,b中间的点有$P_{n-2}^{i-1}$种方案,这中间i条边的边权共有$C_{m-1}^{i-1}$种方案,其余边权有$m^{n-i-1}$种方案,而剩下的就是n个点组成i+1棵树,其中在a,b简单路径上的i+1个点分别属于其中一棵树的方案数,也就是$f(n,i+1)=(i+1)n^{n-i-2}$。
定理拓展:
n个带权的点,定义每条边的权值为相连的两个点的权值之积,定义一棵树的权值是所有边的权值之积,求所有树的权值和。
相当于每棵树中每个点的权值的度数次方的和。考虑Prufer序列,每个点都恰出现度数-1次。于是根据乘法分配律,答案为(所有点权值之积)*(所有点权值之和)^(n-2)。
这个推论包含了上面所有定理。当所有点权值取1时,就是Cayley's Formula。当将点1~m缩成一个权值为m的点时,就是Generalized Cayley's Formula。
以上所有似乎都可以用Matrix Tree那一套理论通过化简行列式得到。
Prufer codes与Generalized Cayley's Formula的更多相关文章
- Prufer codes与Generalized Cayley's Formula学习笔记
\(Prufer\)序列 在一棵\(n\)个点带标号无根树里,我们定义这棵树的\(Prufer\)序列为执行以下操作后得到的序列 1.若当前树中只剩下两个节点,退出,否则执行\(2\) 2.令\(u\ ...
- Codeforces 1109D: generalizations of Cayley's formula证明
做这题的时候发现题解里有提到\(generalizations\ of\ Cayley's\ formula\)的,当场懵逼,Wikipedia里也就带到了一下,没有解释怎么来的,然后下面贴了篇论文. ...
- CF1109DSasha and Interesting Fact from Graph Theory(数数)
题面 传送门 前置芝士 Prufer codes与Generalized Cayley's Formula 题解 不行了脑子已经咕咕了连这么简单的数数题都不会了-- 首先这两个特殊点到底是啥并没有影响 ...
- Codeforces Round #539 div2
Codeforces Round #539 div2 abstract I 离散化三连 sort(pos.begin(), pos.end()); pos.erase(unique(pos.begin ...
- prufer编码 cayley定理
背景(在codeforces 917D 报废后,看题解时听闻了这两个玩意儿.实际上917D与之“木有关西”,也可以认为是利用了prufer的一些思路.) 一棵标号树的Pufer编码规则如下:找到标号最 ...
- 图论:Prufer编码-Cayley定理
BZOJ1430:运用Cayley定理解决树的形态统计问题 由Prufer编码可以引申出来一个定理:Cayley 内容是不同的n结点标号的树的数量为n^(n-2) 换一种说法就是一棵无根树,当知道结点 ...
- 树的计数 Prufer序列+Cayley公式
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...
- luogu P4430 小猴打架(prufer编码与Cayley定理)
题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1) ...
- 树的计数 + prufer序列与Cayley公式(转载)
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...
随机推荐
- 短视频如何制作?如何下载短视频?常用的短视频录制和剪辑App有哪些?
当下,娱乐圈最火的是什么?当然是短视频了. 那么,短视频如何制作?短视频如何挣钱?如何下载免费短视频呢?这篇文章就收录了一些相关的短视频文章,加入收藏哦,小编会持续更新本文. 1. iPhone手机上 ...
- MyEclipse设置字体和背景的方法
可以根据自己喜好设置MyEclipse工作空间中的字体和背景颜色. 1.选择菜单Window→Preferences. 2.设置字体的方法.选择General→Appearance→Colors an ...
- DDLog设置方法
CHENYILONG Blog DDLog设置方法 本文永久地址为http://www.cnblogs.com/ChenYilong/p/3984246.html,转载请注明出处. 201 ...
- 使用js获取浏览器地址栏里的参数
用JS获取地址栏参数的方法(超级简单) 方法一:采用正则表达式获取地址栏参数:( 强烈推荐,既实用又方便!) function GetQueryString(name) { var reg = new ...
- MPC&MAGIC
MPC: Popularity-based Caching Strategy for Content Centric Networks MPC: most popular content MPC主要思 ...
- Linux内存管理 【转】
转自:http://blog.chinaunix.net/uid-25909619-id-4491368.html Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理 ...
- 关于RestFul API 介绍与实践
之前演示的PPT,直接看图... •参考链接: •RESTful API 设计最佳实践 •RESTful API 设计指南 •SOAPwebserivce和RESTfulwebservice对 ...
- CentOS版本区别及 Linux目录结构及其详解
CentOS 7.0体验与之前版本的不同http://www.linuxidc.com/Linux/2014-07/104196.htm CentOS版本选择http://www.centoscn.c ...
- 小白学习安全测试(四)——扫描工具-Vega
WEB扫描工具-Vega 纯图形化界面,Java编写的开源web扫描器.两种工作模式:扫描模式和代理模式[主流扫描功能].用于爬站.处理表单,注入测试等.支持SSL:http://vega/ca.cr ...
- java虚拟机规范(se8)——java虚拟机结构(三)
2.6. 栈帧 栈帧用于存储数据和部分结果,同样也用于执行动态链接,返回方法的值和分派异常. 当方法被调用的时候会创建一个新的栈帧.当一个方法调用结束时,它对应的栈帧就被销毁了,不管是正常调用结束还是 ...