【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 4856 Solved: 983
[Submit][Status][Discuss]
Description
已知多项式方程:
Input
Output
第一行输出方程在[1,m]内的整数解的个数。
Sample Input
2
-3
1
Sample Output
1
2
HINT
对于100%的数据,0<n≤100,|ai|≤1010000,an≠0,m≤1000000。
Solution
暴力枚举即可,难点主要是读入和快速计算。
大整数读入解决方法是mod大~质数,题解大佬说mod一个可能会出问题所以有时候要mod几个~
快速计算的话就是秦九韶公式了QAQ,很好理解的,不过这道题要控制mod的次数!不然多100次都t了QAQ!
Code
#include<bits/stdc++.h>
#define LL long long
#define mod 1000000007
using namespace std; inline LL read() {
LL x = ; int t = ; char ch = getchar();
while(ch > '' || ch < '') { if(ch == '-') t = -; ch = getchar(); }
while(ch >= '' && ch <= '') { x = ((x << ) % mod + (x << ) % mod + ch - '') % mod; ch = getchar(); }
return x * t;
} LL a[];
int n, m, ans[], tot;
inline bool cal(int x) {
LL res = a[n];
for(int i = n - ; i >= ; i --)
res = (res * x % mod + a[i]);
return res == ;
} int main() {
n = read(); m = read();
for(int i = ; i <= n; i ++) a[i] = read();
for(int i = ; i <= m; i ++)
if(cal(i)) ans[++tot] = i;
printf("%d\n", tot);
for(int i = ; i <= tot; i ++)
printf("%d\n", ans[i]);
return ;
}
【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】的更多相关文章
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- bzoj 3751: [NOIP2014]解方程
Description 已知多项式方程: a0+a1x+a2x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 解题报告: 这题比较诡,看到高精度做不了,就要想到 ...
- bzoj 3751: [NOIP2014]解方程【数学】
--我真是太非了,自己搞了7个质数都WA,从别人那粘5个质数就A了-- 就是直接枚举解,用裴蜀定理计算是否符合要求,因为这里显然结果很大,所以我们对多个质数取模看最后是不是都为0 #include&l ...
- poj2305-Basic remains(进制转换 + 大整数取模)
进制转换 + 大整数取模一,题意: 在b进制下,求p%m,再装换成b进制输出. 其中p为b进制大数1000位以内,m为b进制数9位以内二,思路: 1,以字符串的形式输入p,m; 2,转换:字符串-&g ...
- cogs 2170. 大整数取模
2170. 大整数取模 ★ 输入文件:bigint.in 输出文件:bigint.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 输入正整数n和m,输出n mo ...
- 【BZOJ】3751: [NOIP2014]解方程
题意 求\(\sum_{i=0}^{n} a_i x^i = 0\)在\([1, m]\)内的整数解.(\(0 < n \le 100, |a_i| \le 10^{10000}, a_n \n ...
- hdu 4474 大整数取模+bfs
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4474 (a*10+b)%c = ((a%c)*10+b%c)%c; 然后从高位开始枚举能填的数字填充, ...
- LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...
随机推荐
- IsNullOrWhiteSpace与IsNullOrEmpty
public static boolean IsNullOrEmpty(String value) { return (value == null || value.length() == 0);} ...
- bzoj千题计划258:bzoj3123: [Sdoi2013]森林
http://www.lydsy.com/JudgeOnline/problem.php?id=3123 启发式合并主席树 #include<cmath> #include<cstd ...
- Java入门系列(七)Java 集合框架(JCF, Java Collections Framework)
Java 集合概述 List.Set.Map可以看做集合的三大类 java集合就像一个容器,可以将多个对象的引用丢进该容器中. Collection和Map是java集合的根接口. List List ...
- 第11月第21天 php引用 codeigniter cakephp
1. class CI_Controller { private static $instance; /** * Constructor */ public function __construct( ...
- 蓝桥杯 问题 1117: K-进制数 (递归)
题目链接 题目描述 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 例: ...
- [HNOI2013]比赛 (用Hash实现记忆化搜索)
[HNOI2013]比赛 题目描述 沫沫非常喜欢看足球赛,但因为沉迷于射箭游戏,错过了最近的一次足球联赛.此次联 赛共N支球队参加,比赛规则如下: (1) 每两支球队之间踢一场比赛. (2) 若平局, ...
- LeetCode-Valid Number - 有限状态机
判断合法数字,之前好像在哪里看到过这题, 记得当时还写了好久,反正各种改, 今天看到了大神的解法(https://github.com/fuwutu/LeetCode/blob/master/Vali ...
- python selenium - web自动化环境搭建
前提: 安装python环境. 参考另一篇博文:https://www.cnblogs.com/Simple-Small/p/9179061.html web自动化:实现代码驱动浏览器进行点点点的操作 ...
- MPC&MAGIC
MPC: Popularity-based Caching Strategy for Content Centric Networks MPC: most popular content MPC主要思 ...
- word技巧
1.插入注解(脚注和尾注) 2.复制的图片显示不全怎么办? 横向显示,或者图片另存为然后保存为PPT 3.word修订标记的添加和删除(最终版) 4.word中表格样式调整 5.修改标题的样式和标题的 ...