【UOJ#179】线性规划 单纯形
题目链接:
Solution
就是单纯形模板题,这篇博客就是存一下板子。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define eps 1e-9
inline int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} int N,M,id[11000];
double a[1100][1100],c[1100],b[1100],v,ans[1100];
inline void Pivot(int l,int e)
{
swap(id[e],id[N+l]); double r=a[l][e]; a[l][e]=1;
for (int i=1; i<=N; i++) a[l][i]/=r;
b[l]/=r; for (int i=1; i<=M; i++)
if (i!=l) {
r=a[i][e]; a[i][e]=0,b[i]-=r*b[l];
for (int j=1; j<=N; j++) a[i][j]-=r*a[l][j];
} r=c[e];
c[e]=0;
for (int i=1; i<=N; i++) c[i]-=r*a[l][i]; v+=r*b[l];
} inline int Simplex()
{
int l,e; double k;
while (1) {
l=e=0; k=-eps;
for (int i=1; i<=M; i++)
if (b[i]<k) k=b[i],l=i;
if (!l) break;
k=-eps;
for (int i=1; i<=N; i++)
if (a[l][i]<k && (!e || (rand()&1))) k=a[l][i],e=i;
if (!e) {puts("Infeasible"); return 1;}
Pivot(l,e);
}
while (1) {
for (int i=1; i<=N; i++) {
if (c[i]>eps) {e=i; break;}
if (i==N) {printf("%.8lf\n",v); return 0;}
}
double re=1e18; l=0; for (int i=1; i<=M; i++)
if (a[i][e]>eps && b[i]/a[i][e]<re)
re=b[i]/a[i][e],l=i; if (!l) {puts("Unbounded"); return 2;}
Pivot(l,e);
} } int main()
{
N=read(),M=read(); int type=read(); for (int i=1; i<=N; i++) scanf("%lf",&c[i]),id[i]=i;
for (int i=1; i<=M; i++) {
for (int j=1; j<=N; j++) scanf("%lf",&a[i][j]);
scanf("%lf",&b[i]);
} int flag=Simplex(); if (flag || !type) return 0; for (int i=1; i<=M; i++) ans[id[N+i]]=b[i];
for (int i=1; i<=N; i++) printf("%.8lf ",ans[i]); return 0;
}
【UOJ#179】线性规划 单纯形的更多相关文章
- UOJ.179.线性规划(单纯形)
题目链接 这写得还不错:http://www.cnblogs.com/zzqsblog/p/5457091.html 引入基变量\(x_{i+n}\),将约束\(\sum_{i=1}^m a_{ij} ...
- UOJ#179. 线性规划[模板]
传送门 http://uoj.ac/problem/179 震惊,博主竟然还不会线性规划! 单纯形实在学不会啊……背个板子当黑盒用…… 学(chao)了NanoApe dalao的板子 #includ ...
- UOJ#179. 线性规划(线性规划)
描述 提交 自定义测试 这是一道模板题. (这个题现在标程挂了..哪位哥哥愿意提供一下靠谱的标程呀?) 本题中你需要求解一个标准型线性规划: 有 nn 个实数变量 x1,x2,…,xnx1,x2,…, ...
- uoj#179 线性规划
这是一道模板题. 本题中你需要求解一个标准型线性规划: 有nn个实数变量x1,x2,⋯,xnx1,x2,⋯,xn和mm条约束,其中第ii条约束形如∑nj=1aijxj≤bi∑j=1naijxj≤bi. ...
- 【UOJ #179】线性规划 单纯形模板
http://uoj.ac/problem/179 终于写出来了单纯性算法的板子,抄的网上大爷的qwq 辅助线性规划找非基变量时要加个随机化才能A,我也不知道为什么,卡精度吗? 2017-3-6UPD ...
- 【UOJ 179】 #179. 线性规划 (单纯形法)
http://uoj.ac/problem/179 补充那一列修改方法: 对于第i行: $$xi=bi-\sum Aij*xj$$ $$=bi-\sum_{j!=e} Aij*xj-Aie*xe ...
- UVA 10498 Happiness(线性规划-单纯形)
Description Prof. Kaykobad has given Nasa the duty of buying some food for the ACM contestents. Nasa ...
- Note -「线性规划」学习笔记
\(\mathcal{Definition}\) 线性规划(Linear Programming, LP)形式上是对如下问题的描述: \[\operatorname{maximize}~~~~z= ...
- 线性规划VB求解
线性规划VB求解 Rem 定义动态数组 Dim a() As Single, c() As Single, b() As Single, cb() As Single Dim aa() As Sing ...
随机推荐
- Spark记录-Scala类与对象小例子
//基类-Person class Person(val na: String, val ag: Int) { //属性 var name: String = na var age: Int = ag ...
- 关于An internal error occurred during: "Launching MVC on Tomcat 6.x". java.lang.NullPointerException异常处理
一大早上来启动打开myeclipse就报一个这样的错误An internal error occurred during: "Launching MVC on Tomcat 6.x&quo ...
- HBase笔记之namespace
一.什么是namespace 在RDBMS中有database的概念,用来对table进行分组,那么在HBase中当表比较多的时候如何对表分组呢,就是namespace,可以简单的把namespace ...
- xml json
简单概括的话就是,xml本身是一种格式规范,是一种包含了数据以及数据说明的文本格式规范. 比如,我们要给对方传输一段数据,数据内容是“too young,too simple,sometimes na ...
- 使用Cobbler批量部署Linux和Windows:Cobbler服务端部署(一)
本文记录了我使用Cobbler批量安装部署Linux和Windows系统的过程,文章主要分为三部分:Cobbler服务端的安装配置.Linux发行版CentOS和Ubuntu的自动安装部署.Windo ...
- 云计算--MPI
[root@localhost mpi]# mpicc -c base.c[root@localhost mpi]# mpicc -o base base.o[root@localhost mpi]# ...
- Useful Online Resources for New Hackers
出处:https://www.hackerone.com/blog/resources-for-new-hackers HackerOne喜欢花时间与活跃的黑客和有兴趣学习如何破解的人交谈. 就在上周 ...
- C#上传图片(含有图片大小格式过滤以及改变像素安全存储)
示例一: public JsonResult Upload(string parameter) { ]; try { //LogHelper.Info("文件长度:" + file ...
- django Rest Framework---缓存通过drf-extensions扩展来实现
什么情况下使用缓存 1.不经常更新的数据 2.用户经常访问的一些页面,比如商品列表页.商品详情页等 3.用户经常修改的一些操作:购物车.订单中心等 关于DRF缓存扩展可以参考文档:http://chi ...
- C# 特性(Attribute)详细介绍
1.什么是Atrribute 首先,我们肯定Attribute是一个类,下面是msdn文档对它的描述:公共语言运行时允许你添加类似关键字的描述声明,叫做attributes, 它对程序中的元素进行标注 ...