同余方程组

例题1pku2891Strange Way to Express Integers

中国剩余定理求的同余方程组mod 的数是两两互素的。然而本题(一般情况,也包括两两互素的情况,所以中国剩余定理成为了“时代的眼泪”)mod的数可能不是互素,所以要转换一下再求。

P=b1(mod a1);  P / a1 ==?~~~~b1

P =b2(mod a2);

P =b3(mod a3);

……

P =bn(mod an);

a1~an,b1~bn是给出来的。

解:

第一条:a1*x+b1= P

第二条:a2*y+b2= P

第一条减去第二条: a1*x - a2*y = b2-b1

设A=a1,B=-a2,K=b2-b1,得到了x(实际调用exgcd的时候不理会a2前面的负号)

如果K%d!=0,无解

否则,X=[ (x* K/d)%(B/d)+(B/d) ]%(B/d)

LCU表示最小公倍数

P= a1*X+b1+ 若干倍的LCU(a1,a2)(或者把Y=(K-AX)/B,再P=a2*Y+b2+ 若干倍的LCU(a1,a2)

所以新的b= a1*x+b1,新的a= LCU(a1,a2),

把新的b当成b1,新的a当成a1,再去和a3和b3结合,一直到最后结束,最后新的b就是X

 #include<cstdio>
#include<cstring>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long LL a1,b1,a2,b2; LL ax,ay;
LL exgcd(LL a,LL b)
{
if(b==) {ax=,ay=;return a;}
LL g=exgcd(b,a%b);
LL yy=ay;
ay=ax-a/b*ay;ax=yy;
return g;
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
while(scanf("%d",&n)!=EOF)
{
scanf("%lld%lld",&a1,&b1);
bool ok=;
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&a2,&b2);
if(!ok) continue;
LL a,b,c,g;
a=a1,b=a2,c=b2-b1;
g=exgcd(a,b);
if(c%g!=) {ok=;continue;}
if(b/g<) b*=-;
ax=((ax*c/g)%(b/g)+(b/g))%(b/g);
a=b1+ax*a1;
g=a1*a2/exgcd(a1,a2);
a1=g;b1=a;
}
if(!ok) printf("-1\n");
else printf("%lld\n",b1);
}
return ;
}

【poj2891】

2016-02-02 09:44:06

【poj2891】同余方程组的更多相关文章

  1. poj2891 Strange Way to Express Integers poj1006 Biorhythms 同余方程组

    怎样求同余方程组?如: \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equ ...

  2. 【poj2891-Strange Way to Express Integers】拓展欧几里得-同余方程组

    http://poj.org/problem?id=2891 题意:与中国剩余定理不同,p%ai=bi,此处的ai(i=1 2 3 ……)是不一定互质的,所以要用到的是同余方程组,在网上看到有人称为拓 ...

  3. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  4. HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)

    设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x ...

  5. 【hdu3579-Hello Kiki】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=3579 题解:同余方程组的裸题.注意输出是最小的正整数,不包括0. #include<cstdio> ...

  6. 【hdu1573-X问题】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 求小于等于N的正整数中有多少个X满足: X mod a0 = b0 X mod a1 = b1 …… X  ...

  7. poj3708:函数式化简+高精度进制转换+同余方程组

    题目大意 给定一个函数 找出满足条件   等于 k 的最小的x m,k,d已知 其中 m,k 很大需要使用高精度存储 思路: 对 函数f(m)进行化简 ,令t=ceil( log(d,m) ) 可以得 ...

  8. hdu1573:数论,线性同余方程组

    题目大意: 给定一个N ,m 找到小于N的  对于i=1....m,满足  x mod ai=bi  的 x 的数量. 分析 先求出 同余方程组 的最小解x0,然后 每增加lcm(a1...,am)都 ...

  9. POJ 1006 同余方程组

    以前的做法 #include<iostream> #include<cstdio> #include<algorithm> #include<cstring& ...

随机推荐

  1. mysql 超时设置

      在Mysql的默认设置中,如果一个数据库连接超过8小时没有使用(闲置8小时,即   28800s),mysql server将主动断开这条连接,后续在该连接上进行的查询操作都将失败,将   出现: ...

  2. (转载)myeclipse项目名称重命名

    myeclipse项目名称重命名 实例1 今天晚上在做一个jsp唱片显示的实例,myeclipse项目名称原本想写music结果写成了musci.这就需要项目名称的重命名,单纯的使用 “重构--> ...

  3. 【转】谈Objective-c block的实现

    本文转自http://blog.devtang.com/blog/2013/07/28/a-look-inside-blocks/,如有侵权,请联系我删除 前言 这里有关于block的5道测试题,建议 ...

  4. js中跨域请求原理及2种常见解决方案

    一.同源策略: 说到跨域请求,首先得说说同源策略: 1995年,同源政策是由 Netscape 公司引入浏览器的.目前,所有浏览器都实行了这个政策. 同源策略是浏览器的一种安全策略,所谓同源是指,域名 ...

  5. ubuntu16.04 : 4: [: y: unexpected operator

    Ubuntu16.04 执行行脚本出错 在使用sh 执行脚本 出错标志 : 4: [: y: unexpected operator 原因:sh是连接到dash的,又因为dash跟bash的不兼容所以 ...

  6. ASP.NET中常用重置数据的方法

    aspx: <asp:Repeater ID="rptProlist" runat="server" onitemdatabound="rptP ...

  7. 加密算法 DES 3DES RSA AES 简介

    数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码,通常称为[密文],使其只能在输入相应的[密钥]之后才能显示出本来内容,通过这样的途径来达到保护数据不被非法人 ...

  8. android开发:点击缩略图查看大图

    android中点击缩略图查看大图的方法一般有两种,一种是想新浪微博list页面那样,弹出一个窗口显示大图(原activity为背景).另一种就是直接打开一个新的activity显示大图. 1.第一种 ...

  9. 【原创教程】一、Angular教程系列之认识angular

    为什么我会准备写这个原创教程系列? 写下这个标题之后,看着屏幕上空白的内容区,不知从何下手,想说的似乎有很多,似乎又没啥说的.有时候就会陷入这种矛盾中,有时候就是这样,于是,我下定决心这一次一定要把这 ...

  10. Java对数组对象进行排序

    下面是一组对数组对象进行排序的代码: package com.sun; import java.util.ArrayList; import java.util.Arrays; import java ...