题目链接

题意:

  给定一个n, 求:GCD(1, 2) + GCD(1, 3) + GCD(2, 3) + …… + GCD(1, n) + GCD(2, n) + …… + GCD(n-1, n);

设f(n) = ΣGCD(i, n), i = 1, 2, 3, ... , n-1

  本题即求:f(2) + f(3) + f(4) + ... + f(n)

  设s(n) = f(2) + f(3) + f(4) + ... + f(n)

  

  1)

  令 d = GCD(x, n), d 是 x, n的约数

  所以, 1 = GCD(x/d, n/d)  所有满足条件的 x/d 的个数 则为 n/d的 欧拉函数值phi(n/d);

  即满足d = GCD(x, n) 的x的个数为phi(n/d) , 这部分的和为phi(n/d) * d;

  得, f(n) = Σ (i * phi(n/i)) i = [1, n-1]区间内n的所有约数。

  2)

  得出f(n) 的值, 我们就可以递推出s(n)的值了, s(n) = s(n-1) + f(n) , n >= 3

  代码如下:

  

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <set>
#include <map>
#include <list>
#include <queue>
#include <string>
#include <vector>
#include <fstream>
#include <iterator>
#include <iostream>
using namespace std;
#define LL long long
#define MAXN 4000010
#define MOD 1000000007
#define eps 1e-6
int n;
LL f[MAXN], s[MAXN];
int phi[MAXN];
int euler_phi(int n)
{
int m = (int)sqrt(n + 0.5);
int ans = n;
for(int i = ; i <= m; i ++)
if(n % i == )
{
ans = ans / i * (i - );
while(n % i == ) n /= i;
}
if(n > ) ans = ans / n * (n - );
return ans;
} void phi_table(int n)
{
for(int i = ; i <= n; i ++) phi[i] = ;
phi[] = ;
for(int i = ; i <= n; i ++)
if(!phi[i])
{
for(int j = i; j <= n; j += i)
{
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - );
}
}
}
void init()
{
for(int i = ; i < MAXN; i ++)
for(int j = * i; j < MAXN; j += i)
f[j] += i * phi[j/i];
s[] = f[];
for(int i = ; i < MAXN; i ++)
s[i] = s[i-] + f[i];
} int main()
{
phi_table(MAXN - );
init();
while(scanf("%d", &n) && n)
{
printf("%lld\n", s[n]);
}
return ;
}

Uva_11462 GCD - Extreme (II)的更多相关文章

  1. UVA 11426 GCD - Extreme (II) (欧拉函数)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard ...

  2. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

  3. 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)

    [UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...

  4. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  5. GCD - Extreme (II) for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } 推导分析+欧拉函数

    /** 题目:GCD - Extreme (II) 链接:https://vjudge.net/contest/154246#problem/O 题意: for(i=1;i<N;i++) for ...

  6. USACO GCD Extreme(II)

    题目大意:求gcd(1,2)+gcd(1,3)+gcd(2,3)+...+gcd(n-1,n) ---------------------------------------------------- ...

  7. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  8. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  9. uva11426 GCD Extreme(II)

    题意:求sum(gcd(i,j),1<=i<j<=n)1<n<4000001 思路: 1.建立递推关系,s(n)=s(n-1)+gcd(1,n)+gcd(2,n)+……+ ...

随机推荐

  1. NPOI组件集锦

    关于NPOI不错的介绍:http://www.cnblogs.com/restran/p/3889479.html http://www.cnblogs.com/Irving/archive/2012 ...

  2. C#基础知识—父类和子类的关系

    基础知识一: using System; using System.Collections.Generic; using System.Linq; using System.Windows.Forms ...

  3. 第一个Xcode项目 - 代码修改布局约束

    第一行的选中效果已经有了,那第二行的选中效果怎么做呢?我这里选择改变布局约束来实现选中效果 [我有个用object-c做APP的同事他说,我觉得这个应该去获取色块的位置,然后赋给选中用的View,然后 ...

  4. android之listView定位到指定行同时隐藏输入键盘

    帮别人该bug遇到的一个问题,记录下来. listView.setSelection(a); 这个方法可以让让你的listview定位到指定行 但是如果紧接着执行隐藏输入键盘的代码,则会有bug,这个 ...

  5. Android(java)学习笔记188:关于构造代码块,构造函数的一道面试题(华为面试题)

    1.源码是: package text; public class TestStaticCon { public static int a = 0; static { a = 10; System.o ...

  6. Linux下载jdk ,Linux如何下载jdk

    Linux下载jdk Linux如何下载jdk >>>>>>>>>>>>>>>>>>> ...

  7. 插件使用总结-jquery.pin.js

    小伙伴们,俺昨天用了jquery.pin.js这个插件,发现了一些自以为是的使用问题.特此做个总结哈. 1.获取: 下载地址:  http://www.bootcss.com/p/jquery.pin ...

  8. SQL 建立临时表进行查询

    SELECT min (maxrank) as minofmaxrank FROM (SELECT max(rank) as maxrank FROM tbl_core_staff WHERE st_ ...

  9. C# 重写思想

    问题一:什么是重写?     “重写”父类方法就是修改它的实现方式或者说在子类中对它进行重新编写. 问题二:为什么要重写父类的方法      通常,子类继承父类的方法,在调用对象继承方法的时候,调用和 ...

  10. [GDI+] 生成缩略图的类文件SmallImage (转载)

    直接看代码吧,大家可以直接复制使用 /// <summary> /// 类说明:SmallImage类, /// 编码日期:2012-08-20 /// 编 码 人: 苏飞 /// 联系方 ...