Black Box
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10658   Accepted: 4390

Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

ADD (x): put element x into Black Box;

GET: increase i by 1 and give an i-minimum out of all integers
containing in the Black Box. Keep in mind that i-minimum is a number
located at i-th place after Black Box elements sorting by non-
descending.

Let us examine a possible sequence of 11 transactions:

Example 1

N Transaction i Black Box contents after transaction Answer

(elements are arranged by non-descending)

1 ADD(3) 0 3

2 GET 1 3 3

3 ADD(1) 1 1, 3

4 GET 2 1, 3 3

5 ADD(-4) 2 -4, 1, 3

6 ADD(2) 2 -4, 1, 2, 3

7 ADD(8) 2 -4, 1, 2, 3, 8

8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8

9 GET 3 -1000, -4, 1, 2, 3, 8 1

10 GET 4 -1000, -4, 1, 2, 3, 8 2

11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.

Let us describe the sequence of transactions by two integer arrays:

1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

Input

Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4
3 1 -4 2 8 -1000 2
1 2 6 6

Sample Output

3
3
1
2
  水题瞬秒……
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=;
int a[maxn],t[maxn],n,m;
priority_queue<int>A;
priority_queue<int,vector<int>,greater<int> >B;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=m;i++)scanf("%d",&t[i]);
for(int i=,p=;i<=m;i++){
while(p!=t[i])B.push(a[++p]);
while(A.size()<1ul*i){
A.push(B.top());
B.pop();
}
while(B.size()&&A.top()>B.top()){
A.push(B.top());
B.push(A.top());
A.pop();B.pop();
}
printf("%d\n",A.top());
}
return ;
}

数据结构(堆):POJ 1442 Black Box的更多相关文章

  1. POJ 1442 Black Box treap求区间第k大

    题目来源:POJ 1442 Black Box 题意:输入xi 输出前xi个数的第i大的数 思路:试了下自己的treap模版 #include <cstdio> #include < ...

  2. POJ 1442 Black Box(优先队列)

    题目地址:POJ 1442 这题是用了两个优先队列,当中一个是较大优先.还有一个是较小优先. 让较大优先的队列保持k个.每次输出较大优先队列的队头. 每次取出一个数之后,都要先进行推断,假设这个数比較 ...

  3. poj 1442 Black Box(堆 优先队列)

    题目:http://poj.org/problem?id=1442 题意:n,m,分别是a数组,u数组的个数,u[i]w为几,就加到a几,然后输出第i 小的 刚开始用了一个小顶堆,超时,后来看了看别人 ...

  4. POJ 1442 Black Box 堆

    题目: http://poj.org/problem?id=1442 开始用二叉排序树写的,TLE了,改成优先队列,过了.. 两个版本都贴一下吧,赚稿费.. #include <stdio.h& ...

  5. [ACM] POJ 1442 Black Box (堆,优先队列)

    Black Box Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7099   Accepted: 2888 Descrip ...

  6. poj 1442 Black Box(优先队列&Treap)

    题目链接:http://poj.org/problem?id=1442 思路分析: <1>维护一个最小堆与最大堆,最大堆中存储最小的K个数,其余存储在最小堆中; <2>使用Tr ...

  7. POJ 1442 Black Box

    第k大数维护,我推荐Treap..谁用谁知道....                                                           Black Box Time ...

  8. POJ 1442 Black Box -优先队列

    优先队列..刚开始用蠢办法,经过一个vector容器中转,这么一来一回这么多趟,肯定超时啊. 超时代码如下: #include <iostream> #include <cstdio ...

  9. 优先队列 || POJ 1442 Black Box

    给n个数,依次按顺序插入,第二行m个数,a[i]=b表示在第b次插入后输出第i小的数 *解法:写两个优先队列,q1里由大到小排,q2由小到大排,保持q2中有i-1个元素,那么第i小的元素就是q2的to ...

随机推荐

  1. oracle左右连接 完全连接 有效连接 心得总结

    左链接 A表  Left  join  B表  on  条件 示例 A表 B表 SELECT * FROM A  left JOIN B ON A.AID = B.BID; 结果: 左链接查询出来的数 ...

  2. 基于Html5的兼容所有主流浏览器的在线视频播放器videoJs

    在一个新的项目上需要实现在线视频播放,原本打算借助优酷的视频存储和播放,但是发现这个需要用户注册优酷账户,严重影响用户体验,于是这个方案被毙掉了.于是开始了自己开发一个在线播放器的想法,当然尽量使用已 ...

  3. post get

    /// <summary> /// Get方法 /// </summary> /// <param name="serverUrl">url地址 ...

  4. C#中Dictionary、ArrayList、Hashtable和Array的区别

    IDictionary接口是所有字典类集合的基本接口,该接口与ICollection,IEnumerable接口是所有非泛型类集合的最基本的接口 IEnumerable接口用于公开枚举数,该枚举数支持 ...

  5. 为Angular-UEditor增加工具栏属性

    感谢胡大大分享的的开源项目 Angular 的 UEditor 插件 Angular-UEditor 本文只是修改了angular-ueditor.js,加入了对工具栏的定制,方便项目使用 1 (fu ...

  6. csv文本编辑引号问题

    今天发现一个csv的一个问题,csv工具类对于引号默认有特殊的处理.我希望写出来的结果是 1,"1",1 原来的代码是 CsvWriter cw=new CsvWriter(&qu ...

  7. 完美让IE兼容input placeholder属性的jquery实现

    调用时直接引用jquery与下面的js就行了,相对网上的大多数例子来说,这个是比较完美的方案. /* * 球到西山沟 * http://www.cnzj5u.com * 2014/11/26 12:1 ...

  8. TestNG目录

    1 - 简介  2 - 注解  3 - testng.xml  4 - 执行 TestNG  5 - 测试方法, 测试类 和 测试组    5.1 - 测试方法    5.2 - 测试组    5.3 ...

  9. c++ undefined reference to mysqlinit

    Solved g++ $(mysql_config --cflags) file.cpp -o filename $(mysql_config --libs)

  10. C#快速导入海量XML数据至SQL Server数据库

    #region 将Xml中的数据读到Dataset中,然后用SqlBulkCopy类把数据copy到目的表中using (XmlTextReader xmlReader = new XmlTextRe ...