Black Box
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10658   Accepted: 4390

Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

ADD (x): put element x into Black Box;

GET: increase i by 1 and give an i-minimum out of all integers
containing in the Black Box. Keep in mind that i-minimum is a number
located at i-th place after Black Box elements sorting by non-
descending.

Let us examine a possible sequence of 11 transactions:

Example 1

N Transaction i Black Box contents after transaction Answer

(elements are arranged by non-descending)

1 ADD(3) 0 3

2 GET 1 3 3

3 ADD(1) 1 1, 3

4 GET 2 1, 3 3

5 ADD(-4) 2 -4, 1, 3

6 ADD(2) 2 -4, 1, 2, 3

7 ADD(8) 2 -4, 1, 2, 3, 8

8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8

9 GET 3 -1000, -4, 1, 2, 3, 8 1

10 GET 4 -1000, -4, 1, 2, 3, 8 2

11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.

Let us describe the sequence of transactions by two integer arrays:

1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

Input

Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4
3 1 -4 2 8 -1000 2
1 2 6 6

Sample Output

3
3
1
2
  水题瞬秒……
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=;
int a[maxn],t[maxn],n,m;
priority_queue<int>A;
priority_queue<int,vector<int>,greater<int> >B;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=m;i++)scanf("%d",&t[i]);
for(int i=,p=;i<=m;i++){
while(p!=t[i])B.push(a[++p]);
while(A.size()<1ul*i){
A.push(B.top());
B.pop();
}
while(B.size()&&A.top()>B.top()){
A.push(B.top());
B.push(A.top());
A.pop();B.pop();
}
printf("%d\n",A.top());
}
return ;
}

数据结构(堆):POJ 1442 Black Box的更多相关文章

  1. POJ 1442 Black Box treap求区间第k大

    题目来源:POJ 1442 Black Box 题意:输入xi 输出前xi个数的第i大的数 思路:试了下自己的treap模版 #include <cstdio> #include < ...

  2. POJ 1442 Black Box(优先队列)

    题目地址:POJ 1442 这题是用了两个优先队列,当中一个是较大优先.还有一个是较小优先. 让较大优先的队列保持k个.每次输出较大优先队列的队头. 每次取出一个数之后,都要先进行推断,假设这个数比較 ...

  3. poj 1442 Black Box(堆 优先队列)

    题目:http://poj.org/problem?id=1442 题意:n,m,分别是a数组,u数组的个数,u[i]w为几,就加到a几,然后输出第i 小的 刚开始用了一个小顶堆,超时,后来看了看别人 ...

  4. POJ 1442 Black Box 堆

    题目: http://poj.org/problem?id=1442 开始用二叉排序树写的,TLE了,改成优先队列,过了.. 两个版本都贴一下吧,赚稿费.. #include <stdio.h& ...

  5. [ACM] POJ 1442 Black Box (堆,优先队列)

    Black Box Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7099   Accepted: 2888 Descrip ...

  6. poj 1442 Black Box(优先队列&Treap)

    题目链接:http://poj.org/problem?id=1442 思路分析: <1>维护一个最小堆与最大堆,最大堆中存储最小的K个数,其余存储在最小堆中; <2>使用Tr ...

  7. POJ 1442 Black Box

    第k大数维护,我推荐Treap..谁用谁知道....                                                           Black Box Time ...

  8. POJ 1442 Black Box -优先队列

    优先队列..刚开始用蠢办法,经过一个vector容器中转,这么一来一回这么多趟,肯定超时啊. 超时代码如下: #include <iostream> #include <cstdio ...

  9. 优先队列 || POJ 1442 Black Box

    给n个数,依次按顺序插入,第二行m个数,a[i]=b表示在第b次插入后输出第i小的数 *解法:写两个优先队列,q1里由大到小排,q2由小到大排,保持q2中有i-1个元素,那么第i小的元素就是q2的to ...

随机推荐

  1. Python 记录(一)

    一开始没发现3.5与2.x版本的区别,导致浪费了很多时间在导包等问题上: 如: Pyhton2中的urllib2工具包,在Python3中分拆成了urllib.request和urllib.error ...

  2. SQL查询显示行号、随机查询、取指定行数据

    转自:walkingp 1.显示行号 如果数据没有删除的情况下主键与行号是一致的,但在删除某些数据,行号就与主键不一致了,这时需要查询行号就需要用新的方法,在SQL Server2005之前,需要使用 ...

  3. Bash关闭输出(关闭正确、错误输出)

    利用&>重定向,不输出任何内容: echo hello &> /dev/null 关闭正确输出: echo hello 1> /dev/null 关闭错误输出: ec ...

  4. mysql修改root密码的方法

    方法1: 用SET PASSWORD命令 首先登录MySQL. 格式:mysql> set password for 用户名@localhost = password('新密码'); 例子:my ...

  5. 基于事件的异步模式——BackgroundWorker

    实现异步处理的方法很多,经常用的有基于委托的方式,今天记录的是基于事件的异步模式.利用BackgroundWorker组件可以很轻松的实现异步处理,并且该组件还支持事件的取消.进度报告等功能.本文以计 ...

  6. Nodejs服务器端脚本

    首先是安装,安装很简单,下载一个msi文件后一路下一步,没有难度, 测试的时候,如果你发现你的环境变量里面没有自动添加进去,也可以进行手动添加环境变量 之后在命令窗口输入: 得到nodejs的版本就说 ...

  7. Android清单文件AndroidMenifest.xml

    1.AndroidMenifes.xml清单文主要结构件结构 所谓主要结构就是每一个清单文件中都必不可少的结构主要是下面三层 第一层.menifest 第二层.application,use-sdk ...

  8. 详细查看数据库SQL执行计划

    DBCC DROPCLEANBUFFERS 清除数据缓存DBCC FREEPROCCACHE  清除执行计划缓存 SET SHOWPLAN_XML ON 此语句导致 SQL Server 不执行 Tr ...

  9. ie67 设置最小宽度最小高度

    1.最小宽度 min-width:1003px; _width:expression((document.documentElement.clientWidth||document.body.clie ...

  10. Invoke()/BeginInvoke()区别

    查看MSDN如下: Control..::.Invoke          ---> 在拥有此控件的基础窗口句柄的线程上执行委托. Control..::.BeginInvoke  ---> ...