LibLinear(SVM包)使用说明之(三)实践

LibLinear(SVM包)使用说明之(三)实践

zouxy09@qq.com

http://blog.csdn.net/zouxy09

我们在UFLDL的教程中,Exercise: Convolution and Pooling这一章节,已经得到了cnnPooledFeatures.mat特征。在该练习中,我们使用的是softmax分类器来分类的。在这里我们修改为用SVM来替代softmax分类器。SVM由Liblinear软件包来提供。这里是四分类问题,所以Liblinear会根据我们传入的训练样本训练四个二分类器,以实现四分类。以前由softmax分类器得到的准确率是80.406%。在这里换成Liblinear后,准确率变为80.75%。在这里差别不是很大。

在本文的例子中,我们增加了scale和Cross Validation,Cross Validation是用来选择一个最好的参数C的(不知道自己这两个步骤有没有正确,如有错误,还望大家提醒,谢谢)。

具体的代码如下:

  1. %// Classification by LibLinear
  2. %// LibLinear: http://www.csie.ntu.edu.tw/~cjlin/liblinear/
  3. %// Author : zouxy
  4. %// Date   : 2013-9-2
  5. %// HomePage : http://blog.csdn.net/zouxy09
  6. %// Email  : zouxy09@qq.com
  7. clear; clc;
  8. %%% step1: load data
  9. fprintf(1,'step1: Load data...\n');
  10. % pooledFeaturesTrain大小为400*2000*3*3
  11. % pooledFeaturesTest大小为400*3200*3*3
  12. % 第一维是特征个数,也就是特征图个数,第二维是样本个数,第三维是特征图的宽,
  13. % 第四维是特征图的高
  14. load cnnPooledFeatures.mat;
  15. load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels
  16. load stlTestSubset.mat  % loads numTestImages,  testImages,  testLabels
  17. % B = permute(A,order) 按照向量order指定的顺序重排A的各维
  18. train_X = permute(pooledFeaturesTrain, [1 3 4 2]);
  19. % 将每个样本的特征拉成一个列向量,每个样本一个列,矩阵大小为3600*2000
  20. train_X = reshape(train_X, numel(pooledFeaturesTrain) / numTrainImages, numTrainImages);
  21. train_Y = trainLabels; % 2000*1
  22. test_X = permute(pooledFeaturesTest, [1 3 4 2]);
  23. test_X = reshape(test_X, numel(pooledFeaturesTest) / numTestImages, numTestImages);
  24. test_Y = testLabels;
  25. % release some memory
  26. clear trainImages testImages pooledFeaturesTrain pooledFeaturesTest;
  27. %%% step2: scale the data
  28. fprintf(1,'step2: Scale data...\n');
  29. % Using the same scaling factors for training and testing sets,
  30. % we obtain much better accuracy. Note: scale each attribute(feature), not sample
  31. % scale to [0 1]
  32. % when a is a vector, b = (a - min(a)) .* (upper - lower) ./ (max(a)-min(a)) + lower
  33. lower = 0;
  34. upper = 1.0;
  35. train_X = train_X';
  36. X_max = max(train_X);
  37. X_min = min(train_X);
  38. train_X = (train_X - repmat(X_min, size(train_X, 1), 1)) .* (upper - lower) ...
  39. ./ repmat((X_max - X_min), size(train_X, 1), 1) + lower;
  40. test_X = test_X';
  41. test_X = (test_X - repmat(X_min, size(test_X, 1), 1)) .* (upper - lower) ...
  42. ./ repmat((X_max - X_min), size(test_X, 1), 1) + lower;
  43. % Note: before scale the accuracy is 80.4688%, after scale it turns to 80.1875%,
  44. % and took more time. So is that my scale operation wrong or other reasons?
  45. % After adding bias, Accuracy = 80.75% (2584/3200)
  46. %%% step3: Cross Validation for choosing parameter
  47. fprintf(1,'step3: Cross Validation for choosing parameter c...\n');
  48. % the larger c is, more time should be costed
  49. c = [2^-6 2^-5 2^-4 2^-3 2^-2 2^-1 2^0 2^1 2^2 2^3];
  50. max_acc = 0;
  51. tic;
  52. for i = 1 : size(c, 2)
  53. option = ['-B 1 -c ' num2str(c(i)) ' -v 5 -q'];
  54. fprintf(1,'Stage: %d/%d: c = %d, ', i, size(c, 2), c(i));
  55. accuracy = train(train_Y, sparse(train_X), option);
  56. if accuracy > max_acc
  57. max_acc = accuracy;
  58. best_c = i;
  59. end
  60. end
  61. fprintf(1,'The best c is c = %d.\n', c(best_c));
  62. toc;
  63. %%% step4: train the model
  64. fprintf(1,'step4: Training...\n');
  65. tic;
  66. option = ['-c ' num2str(c(best_c)) ' -B 1 -e 0.001'];
  67. model = train(train_Y, sparse(train_X), option);
  68. toc;
  69. %%% step5: test the model
  70. fprintf(1,'step5: Testing...\n');
  71. tic;
  72. [predict_label, accuracy, dec_values] = predict(test_Y, sparse(test_X), model);
  73. toc;

LibLinear(SVM包)使用说明之(三)实践的更多相关文章

  1. LibLinear(SVM包)使用说明之(一)README

    转自:http://blog.csdn.net/zouxy09/article/details/10947323/ LibLinear(SVM包)使用说明之(一)README zouxy09@qq.c ...

  2. LibLinear(SVM包)使用说明之(二)MATLAB接口

    LibLinear(SVM包)使用说明之(二)MATLAB接口 LibLinear(SVM包)使用说明之(二)MATLAB接口 zouxy09@qq.com http://blog.csdn.net/ ...

  3. LibLinear(SVM包)的MATLAB安装

    LibLinear(SVM包)的MATLAB安装 1 LIBSVM介绍 LIBSVM是众所周知的支持向量机分类工具包(一些支持向量机(SVM)的开源代码库的链接及其简介),运用方便简单,其中的核函数( ...

  4. Maven中解决jar包冲突的三种方式

    首先我们在idea中创建一个maven工程,我们只关注pom.xml以及External Libraries中导入的jar包 导入spring-beans.jar <dependency> ...

  5. 使用 tcpdump 抓包分析 TCP 三次握手、四次挥手与 TCP 状态转移

    目录 文章目录 目录 前文列表 TCP 协议 图示三次握手与四次挥手 抓包结果 抓包分析 TCP 三次握手 数据传输 四次挥手 TCP 端口状态转移 状态转移 前文列表 <常用 tcpdump ...

  6. Wireshark抓包分析TCP“三次握手,四次挥手”

    1.目的 客户端与服务器之间建立TCP/IP连接,我们知道是通过三次握手,四次挥手实现的,但是很多地方对这个知识的描述仅限于理论层面,这次我们通过网络抓包的方式来看一下实际的TCP/IP传输过程. 2 ...

  7. 用wireshark抓包分析TCP三次握手、四次挥手以及TCP实现可靠传输的机制

    关于TCP三次握手和四次挥手大家都在<计算机网络>课程里学过,还记得当时高超老师耐心地讲解.大学里我遇到的最好的老师大概就是这位了,虽然他只给我讲过<java程序设计>和< ...

  8. 基于IPv6的数据包分析(第三组)

    一.实验拓扑 二.配置过程 本处提供R1.R2.R4的详细配置过程(包含静态路由的配置) 1)      R1: R1(config)#int e1/0 R1(config-if)#ipv6 addr ...

  9. Java网络编程学习A轮_02_抓包分析TCP三次握手过程

    参考资料: https://huoding.com/2013/11/21/299 https://hpbn.co/building-blocks-of-tcp/#three-way-handshake ...

随机推荐

  1. 关于运行SWT程序遇到的一个错误的总结

    具体的错误信息如下: Exception in thread "main" java.lang.SecurityException: SHA1 digest error for o ...

  2. 用Java socket (TCP通信模型)实现一个简单的web 服务器

    package cn.magicdu.think.socket; import java.io.OutputStream; import java.io.PrintWriter; import jav ...

  3. onActivityResult调用不到的问题

    有可能是调用时机不对,请转移到: http://www.cnblogs.com/shaweng/p/3875825.html 还有可能是Activity的launchmode导致的 使用 androi ...

  4. SQL Server调优系列进阶篇 - 如何维护数据库索引

    前言 上一篇我们研究了如何利用索引在数据库里面调优,简要的介绍了索引的原理,更重要的分析了如何选择索引以及索引的利弊项,有兴趣的可以点击查看. 本篇延续上一篇的内容,继续分析索引这块,侧重索引项的日常 ...

  5. 如何在ANDROID JNI 的C++中打Log

    http://blog.csdn.net/pkigavin/article/details/8583537 最近在研究Android 2.3.3源代码的C/C++层,需要对代码进行一些调试,但是奇怪的 ...

  6. Java多线程编程总结(学习博客)

    Java多线程编程总结:网址:http://lavasoft.blog.51cto.com/62575/27069/

  7. oracle中存储过程的使用

    存储过程 刚开始我接触到数据库的时候,感觉存储过程是很难的,但是当你看完我给你列举的例子,你就能够轻松的掌握存储过程的创建和使用了. 存储过程是在大型数据库系统中存储过程在数据库中经过第一次编译后就不 ...

  8. IO流详解之代码详解

    前面呢已经发了一些理解,整理了注释,整体来说IO这里难度不是很大,代码呢没有详细敲,只写了一个大概总结的内容如下: /** 一切皆文件:文件是所有操作系统保存数据和处理逻辑的唯一方式:不管是.exe, ...

  9. Ext.Net学习笔记17:Ext.Net GridPanel Selection

    Ext.Net学习笔记17:Ext.Net GridPanel Selection 接下来是Ext.Net的GridPanel的另外一个功能:选择. 我们在GridPanel最开始的用法中已经见识过如 ...

  10. JS基本类型和引用类型的值

    JS中可以把变量分成两部分,基本类型和引用类型. 基本类型比较简单,包括:Undefined.Null.Boolean.Number和String,基本类型值就是简单的数据段:引用类型值可能由多个值构 ...