http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1094

ZOJ Problem Set - 1094

Matrix Chain Multiplication

--------------------------------------------------------------------------------

Time Limit:  2 Seconds      Memory Limit:  65536 KB 

--------------------------------------------------------------------------------

Matrix multiplication problem is a typical example of dynamical programming. 

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix.
There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500. Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy. Input Specification
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n (1 <= n <= 26), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF): SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z" Output Specification
For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.
Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I)) Sample Output
0
0
0
error
10000
error
3500
15000
40500
47500
15125
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <stack>
using namespace std;
struct node
{
int m,n;
// bool f;
};
node hash[200];
char s[1000];
int main()
{
int i,n,sum;
char c;
bool b;
scanf("%d",&n);
while(n--)
{
getchar();
scanf("%c",&c);
scanf("%d%d",&hash[c].m,&hash[c].n);
}
node temp,temp1;
while(scanf("%s",s)!=EOF)
{ sum=0;b=1;
stack<char> s1;
stack<node> s2;
for(i=0;s[i]!='\0';i++)
{
if(s[i]=='(')
s1.push(s[i]);
else if(s[i]==')')
{
c=s1.top();
s1.pop();
s1.pop();
while(!s1.empty()&&s1.top()!='(')
{
temp=s2.top();
s2.pop();
temp1=s2.top();
if(temp1.n!=temp.m)
{
b=0;break;
}
sum+=temp1.m*temp1.n*temp.n;
temp1.n=temp.n;
s2.pop();
s2.push(temp1);
s1.pop();
}
s1.push(c);
}
else
{
if(!s1.empty()&&s1.top()!='(')
{
temp=s2.top();
if(temp.n!=hash[s[i]].m)
{
b=0;break;
}
sum+=temp.m*temp.n*hash[s[i]].n;
temp.n=hash[s[i]].n;
s2.pop();
s2.push(temp);
}
else
{
s2.push(hash[s[i]]);
s1.push('#');
}
}
}
if(b)
printf("%d\n",sum);
else
printf("error\n");
}
return 0;
}

  

  

poj 2246 (zoj 1094)的更多相关文章

  1. POJ 1775 (ZOJ 2358) Sum of Factorials

    Description John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematic ...

  2. POJ 2260(ZOJ 1949) Error Correction 一个水题

    Description A boolean matrix has the parity property when each row and each column has an even sum, ...

  3. POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配

    两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...

  4. poj 3335(半平面交)

    链接:http://poj.org/problem?id=3335     //大牛们常说的测模板题 ------------------------------------------------- ...

  5. poj 3122 (二分查找)

    链接:http://poj.org/problem?id=3122 Pie Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1 ...

  6. poj3270 && poj 1026(置换问题)

    | 1 2 3 4 5 6 | | 3 6 5 1 4 2 | 在一个置换下,x1->x2,x2->x3,...,xn->x1, 每一个置换都可以唯一的分解为若干个不交的循环 如上面 ...

  7. POJ——3169Layout(差分约束)

    POJ——3169Layout Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14702   Accepted ...

  8. POJ 3252 (数位DP)

    ###POJ 3252 题目链接 ### 题目大意:给你一段区间 [Start,Finish] ,在这段区间中有多少个数的二进制表示下,0 的个数 大于等于 1 的个数. 分析: 1.很显然是数位DP ...

  9. POJ 3368 (ST表)

    链接:http://poj.org/problem?id=3368 题意:给出n个连续单调不递减数,q次询问,每次询问区间(L,R)出现频率最多的数,问出现了多少次 思路:因为n个数是单调不递减的,所 ...

随机推荐

  1. 使用日期工具类:DateUtil

    利用java开发,避免不了String.Date转换,前一天.后一天等问题.给出一个工具类,仅供学习交流. import java.text.DateFormat; import java.text. ...

  2. xUtils3源码分析(一):view的绑定

    概述 xUtils3是国人开发的一款功能丰富的Android快速开发框架,值得研究下.zip包下载:[ZIP]xutils主要分以下几个模块 视图绑定模块 网络请求模块 数据库模块 图片加载模块 我们 ...

  3. javaee后台适合用的编辑器插件

    http://pan.baidu.com/s/1bn7D9sr 这个适合用在后台

  4. Swift - 33 - 返回函数类型和函数嵌套

    //: Playground - noun: a place where people can play import UIKit /*---------------------------返回函数类 ...

  5. js 去掉浏览器右击默认事件

    1.整个页面所有的右击事件 document.oncontextmenu = function(){ return false; } 2.特定的区域 document.getElementById(& ...

  6. Thinkphp---练习:数据的增删改查

    利用ThinkPHP连接数据库的增删改查的例题:用到的数据库表名Info表,Nation表 数据显示页面:MainController.class.php中的方法(增删改查全包括--function ...

  7. set_time_limit() 控制页面运行时间

    当你的页面有大量数据时,建议使用set_time_limit()来控制运行时间,默认是30s,所以需要你将执行时间加长点,如 set_time_limit(300)  ,其中将秒数设为0 ,表示持续运 ...

  8. jquery ajax (1)原始js 实现

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. python ATM购物程序

    需求: 模拟实现一个ATM + 购物商城程序 额度 15000或自定义 实现购物商城,买东西加入 购物车,调用信用卡接口结账 可以提现,手续费5% 每月22号出账单,每月10号为还款日,过期未还,按欠 ...

  10. Sample rate 理解

    在Gnuradio中,我们可以看到很多模块中都有Sample rate 这个概念 然后看到一个说明 Any processing block's 'Sample Rate' parameter is ...