吴裕雄--天生自然深度学习TensorBoard可视化:改造后的mnist_train
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if(regularizer != None):
tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2
# 1. 定义神经网络的参数。
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 3000
MOVING_AVERAGE_DECAY = 0.99
# 2. 定义训练的过程并保存TensorBoard的log文件。
def train(mnist):
# 输入数据的命名空间。
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 处理滑动平均的命名空间。
with tf.name_scope("moving_average"):
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 计算损失函数的命名空间。
with tf.name_scope("loss_function"):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) # 定义学习率、优化方法及每一轮执行训练的操作的命名空间。
with tf.name_scope("train_step"):
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') writer = tf.summary.FileWriter("F:\\temp\\log", tf.get_default_graph())
# 训练模型。
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE) if(i % 1000 == 0):
# 配置运行时需要记录的信息。
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
# 运行时记录运行信息的proto。
run_metadata = tf.RunMetadata()
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys},options=run_options, run_metadata=run_metadata)
writer.add_run_metadata(run_metadata=run_metadata, tag=("tag%d" % i), global_step=i)
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
else:
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
writer.close()
# 3. 主函数。
def main(argv=None):
mnist = input_data.read_data_sets("F:\\TensorFlowGoogle\\201806-github\\datasets\\MNIST_data", one_hot=True)
train(mnist) if __name__ == '__main__':
main()
吴裕雄--天生自然深度学习TensorBoard可视化:改造后的mnist_train的更多相关文章
- 吴裕雄--天生自然深度学习TensorBoard可视化:命名空间
# 1. 不同的命名空间. import tensorflow as tf with tf.variable_scope("foo"): a = tf.get_variable(& ...
- 吴裕雄--天生自然深度学习TensorBoard可视化:projector_MNIST
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from te ...
- 吴裕雄--天生自然深度学习TensorBoard可视化:监控指标可视化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 1. 生成变量监控信息并定义生 ...
- 吴裕雄--天生自然深度学习TensorBoard可视化:projector_data_prepare
import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...
- 吴裕雄--天生自然HADOOP学习笔记:hadoop集群实现PageRank算法实验报告
实验课程名称:大数据处理技术 实验项目名称:hadoop集群实现PageRank算法 实验类型:综合性 实验日期:2018年 6 月4日-6月14日 学生姓名 吴裕雄 学号 15210120331 班 ...
- 吴裕雄--天生自然HADOOP学习笔记:基本环境配置
实验目的 学习安装Java 学习配置环境变量 学习设置免密码登陆的方法 掌握Linux环境下时间同步的配置 实验原理 1.Java的安装 java是大数据的黄金语言,这和java跨平台的特性是密不可分 ...
- 吴裕雄--天生自然HADOOP学习笔记:使用yum安装更新软件
实验目的 了解yum的原理及配置 学习软件的更新与安装 学习源代码编译安装 实验原理 1.编译安装 前面我们讲到了安装软件的方式,因为linux是开放源码的,我们可以直接获得源码,自己编译安装.例如: ...
- 吴裕雄--天生自然HADOOP学习笔记:Shell工具使用
实验目的 学习使用xshell工具连接Linux服务器 在连上的服务器中进入用户目录 熟悉简单的文件操作命令 实验原理 熟悉shell命令是熟悉使用linux环境进行开发的第一步,我们在linux的交 ...
- 吴裕雄--天生自然MySQL学习笔记:MySQL UPDATE 更新
如果需要修改或更新 MySQL 中的数据,我们可以使用 SQL UPDATE 命令来操作. 语法 以下是 UPDATE 命令修改 MySQL 数据表数据的通用 SQL 语法: UPDATE table ...
随机推荐
- 七十九、SAP中数据库操作之更新数据,UPDATE的用法
一.我们查看SFLIGHT数据库,比如我们需要改这条数据 二.代码如下 三.执行效果如下,显示“数据更新成功” 四.我们来看一下SFLIGHT数据库,发现已经由DEM更改为了AAA了
- Java singleton 单例
饿汉式,instance在类加载化时完成初始化,线程安全 package cookie; public class SingletonAtOnce { private SingletonAtOnce( ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 字符串
C++ 提供了以下两种类型的字符串表示形式: C 风格字符串 C++ 引入的 string 类类型 C 风格的字符串起源于 C 语言,并在 C++ 中继续得到支持.字符串实际上是使用 null 字符 ...
- spring源码 ConfigurableListableBeanFactory根接口
用机器翻译+原作者的翻译:https://blog.csdn.net/u011179993/article/details/51636742 /* * Copyright 2002-2015 the ...
- LightOJ - 1282 Leading and Trailing (数论)
题意:求nk的前三位和后三位. 分析: 1.后三位快速幂取模,注意不足三位补前导零. 补前导零:假如nk为1234005,快速幂取模后,得到的数是5,因此输出要补前导零. 2.前三位: 令n=10a, ...
- UVA - 820 Internet Bandwidth (因特网带宽)(最大流)
题意:给出所有计算机之间的路径和路径容量后,求出两个给定结点之间的流通总容量.(假设路径是双向的,且两方向流动的容量相同) 分析:裸最大流.标号从1开始,初始化的时候注意. #pragma comme ...
- ubuntu16.04 重置mysql密码
先登陆服务器,找到自己的my.cnf文件,通常会在 /etc目录下(如果不在,可以用find / -name my.cnf命令找一下), 然后使用 vi my.cnf 命令编辑该文件(建议先备份),在 ...
- MySQL8.0安装caching_sha2_password问题
MySQL安装之后无法用工具连接上本地数据库 详情原因可见: https://mysqlserverteam.com/mysql-8-0-4-new-default-authentication-pl ...
- 实验吧web-难-认真一点!(布尔盲注,py脚本)
也可用bp进行爆破,这里用py脚本. 打看网页输入1,显示You are in,输入2,显示You are not in,是个布尔注入. 然后看看过滤了什么. sql注入没有过滤:--+.or sql ...
- css笔记01
CSS样式(Cascading Style Sheets) 表格布局缺陷: 嵌套太多,一旦顺序错乱页面达不到预期效果 表格布局页面不灵活,动一块整个布局全都要变 语法: 在style标签中 ...