Longest Increasing Subsequence

The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.

Example

In the first 16 terms of the binary Van der Corput sequence

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

a longest increasing subsequence is

0, 2, 6, 9, 11, 15.

This subsequence has length six; the input sequence has no seven-member increasing subsequences. The longest increasing subsequence in this example is not unique: for instance,

0, 4, 6, 9, 11, 15 or
0, 2, 6, 9, 13, 15 or
0, 4, 6, 9, 13, 15

are other increasing subsequences of equal length in the same input sequence.

output:6

思路:

1.初始化一个长度数组lengthsArray,值全为1

2.声明两个变量previousIndex=0,currentIndex=1;

3通过currentIndex<sequence.length遍历sequence

  (1)若sequence[previousIndex]<sequence[currentIndex],则lengthsArray[currentIndex]=max(lengthsArray[currentIndex],lengthsArray[previous]+1)

  (2)previousIndex++;

  (3)若previousIndex=currentIndex,则previous=0,currentIndex++;

代码如下:

/**
* Dynamic programming approach to find longest increasing subsequence.
* Complexity: O(n * n)
*
* @param {number[]} sequence
* @return {number}
*/
export default function dpLongestIncreasingSubsequence(sequence) {
// Create array with longest increasing substrings length and
// fill it with 1-s that would mean that each element of the sequence
// is itself a minimum increasing subsequence.
const lengthsArray = Array(sequence.length).fill(); let previousElementIndex = ;
let currentElementIndex = ; while (currentElementIndex < sequence.length) {
if (sequence[previousElementIndex] < sequence[currentElementIndex]) {
// If current element is bigger then the previous one then
// current element is a part of increasing subsequence which
// length is by one bigger then the length of increasing subsequence
// for previous element.
lengthsArray[currentElementIndex] = max(lengthsArray[currentElementIndex],lengthsArray[previousElementIndex] + );
} // Move previous element index right.
previousElementIndex += ; // If previous element index equals to current element index then
// shift current element right and reset previous element index to zero.
if (previousElementIndex === currentElementIndex) {
currentElementIndex += ;
previousElementIndex = ;
}
} // Find the biggest element in lengthsArray.
// This number is the biggest length of increasing subsequence.
let longestIncreasingLength = ; for (let i = ; i < lengthsArray.length; i += ) {
if (lengthsArray[i] > longestIncreasingLength) {
longestIncreasingLength = lengthsArray[i];
}
} return longestIncreasingLength;
}
												

最长递增子序列-dp问题的更多相关文章

  1. UVa 10534 Wavio Sequence (最长递增子序列 DP 二分)

    Wavio Sequence  Wavio is a sequence of integers. It has some interesting properties. ·  Wavio is of ...

  2. dp之最长递增子序列模板poj3903

    最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS.排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = ...

  3. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  4. Longest Increasing Subsequences(最长递增子序列)的两种DP实现

    一.本文内容 最长递增子序列的两种动态规划算法实现,O(n^2)及O(nlogn).     二.问题描述 最长递增子序列:给定一个序列,从该序列找出最长的 升序/递增 子序列. 特点:1.子序列不要 ...

  5. [DP]最长递增子序列

    #include <iostream> #include <limits.h> #include <vector> #include <algorithm&g ...

  6. HDU-1160-FatMouse's Speed(DP, 最长递增子序列)

    链接: https://vjudge.net/problem/HDU-1160 题意: FatMouse believes that the fatter a mouse is, the faster ...

  7. 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法

    1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答      ...

  8. [程序员代码面试指南]最长递增子序列(二分,DP)

    题目 例:arr=[2,1,5,3,6,4,8,9,7] ,最长递增子序列为1,3,4,8,9 题解 step1:找最长连续子序列长度 dp[]存以arr[i]结尾的情况下,arr[0..i]中的最长 ...

  9. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

随机推荐

  1. 如何在 main() 执行之前先运行其它函数

    摘要:我们知道 C++ 的全局对象的构造函数会在 main 函数之前先运行,其实在 c 语言里面很早就有啦,在 gcc 中可以使用 __attribute__ 关键字指定如下(在编译器编译的时候就绝决 ...

  2. mysql 不停机 短时间锁表 备份 主备同步 新增备份机器

    刷新数据   [root@localhost ~]# mysql -e 'flush tables with read lock;' 锁表刷新表数据   [root@localhost ~]# mys ...

  3. Centos7安装Xrdp远程桌面

    Xrdp是Microsoft远程桌面协议RDP的一个开源实现,它允许以图像方式控制远程系统. 测试环境 服务端: CentOS Linux release 7.7.1908 (Core) 客户端: W ...

  4. Mac 终端实现快速定位命令 自动补全目录

    基于macOS oh-my-zsh 切换终端主题 incr.zsh 实现快速定位命令 自动补全目录 效果预览 步骤 1.安装 oh-my-zsh sh -c "$(curl -fsSL ht ...

  5. CodeForces 998B Cutting(贪心)

    https://codeforces.com/problemset/problem/998/B 简单贪心题 代码如下: #include <stdio.h> #include <st ...

  6. 模仿u-boot的makefile结构

    u-boot(2014.04)是通过顶层makefile调用各子目录中的makefile来实现整个工程的编译的,实际上子目录的makefile是include进来的.这里仿照这种结构写个模板测试一下. ...

  7. RxJava的简单使用

    0x00 介绍 先简单介绍一下这个库,Rx的一系列实现都是为了解决同一个问题,就是让异步编程变的更加简单.它的主要思想是使用观察者模式,分离了数据源和数据的使用者,同时它拓展了观察者模式,将数据源中的 ...

  8. 01 - CentOS 中安装Python 2.7.16

    准备 下载链接:https://www.python.org/ftp/python/ 下载源码:wget https://www.python.org/ftp/python/2.7.16/Python ...

  9. nginx 配合jersey+netty的奇怪问题

    角色 client proxy nginx server jersey+netty 问题表现 client 直接请求server 正常,返回准确json数据 jsondat client->ng ...

  10. A component required a bean named xxx that could not be found. Action: Consider defining

    0 环境 系统:win10 1 正文 https://stackoverflow.com/questions/44474367/field-in-com-xxx-required-a-bean-of- ...