2019 ICPC 南京网络赛 H-Holy Grail
As the current heir of a wizarding family with a long history,unfortunately, you find yourself forced to participate in the cruel Holy Grail War which has a reincarnation of sixty years.However,fortunately,you summoned a Caster Servant with a powerful Noble Phantasm.When your servant launch her Noble Phantasm,it will construct a magic field,which is actually a directed graph consisting of n vertices and m edges.More specifically,the graph satisfies the following restrictions :
- Does not have multiple edges(for each pair of vertices x and y, there is at most one edge between this pair of vertices in the graph) and does not have self-loops(edges connecting the vertex with itself).
- May have negative-weighted edges.
- Does not have a negative-weighted loop.
- n<=300 , m<=500.
Currently,as your servant's Master,as long as you add extra 6 edges to the graph,you will beat the other 6 masters to win the Holy Grail.
However,you are subject to the following restrictions when you add the edges to the graph:
- Each time you add an edge whose cost is c,it will cost you c units of Magic Value.Therefore,you need to add an edge which has the lowest weight(it's probably that you need to add an edge which has a negative weight).
- Each time you add an edge to the graph,the graph must not have negative loops,otherwise you will be engulfed by the Holy Grail you summon.
Input
Input data contains multiple test cases. The first line of input contains integer t — the number of testcases (1 \le t \le 51≤t≤5).
For each test case,the first line contains two integers n,m,the number of vertices in the graph, the initial number of edges in the graph.
Then m lines follow, each line contains three integers x, y and w (0 \le x,y<n0≤x,y<n,-10^9−109≤w≤10^9109, x \not = yx=y) denoting an edge from vertices x to y (0-indexed) of weight w.
Then 6 lines follow, each line contains two integers s,t denoting the starting vertex and the ending vertex of the edge you need to add to the graph.
It is guaranteed that there is not an edge starting from s to t before you add any edges and there must exists such an edge which has the lowest weight and satisfies the above restrictions, meaning the solution absolutely exists for each query.
Output
For each test case,output 66 lines.
Each line contains the weight of the edge you add to the graph.
这个题,我收获很大,不是在算法上的提升,而是在与对于自己的学习方式的改进,这个题暴露出诸多问题,如下:
1.对于自己写的模板,没有经过验证,使用起来,漏洞百出。
2.对于用别人的模板,看着难受,改起来费劲容易出错。
3.鉴于上一条,就要写第一条,所以以后改板子,写板子都要记下来,最好是每次自己写,现在有点后悔。
所以导致超时4遍,wa了4遍,所以吸取我的教训,除了非常固定的模板,其他都自己写,养成习惯,每次写都是对于这个算法思想的再认识。
这个题目的思路我是秒出的,因为打眼一看就能看出这个题目说的是带负边权的最短路问题,现在我们将范围缩小,只剩下了SPFA,Bellman-ford,和Floyd。 虽然这个题Floyd能过,但是不是这个题的正解。这个题首选的是bellman 或者SPFA,然后就是求填边之后的非负最小环问题。共跑6遍Bellman-ford
#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
#define Swap(a,b) a^=b^=a^=b
#define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define speed ios_base::sync_with_stdio(0)
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define INF 0x3f3f3f3f
#define maxn 305
#define esp 1e-9
#define mp(a,b) make_pair(a,b)
using namespace std;
typedef long long ll;
//-----------------------*******----------------------------//
const int N=1000;
int n,m;//点数,边数,编号都从0开始
long long w[N];//w[i]表示第i条边的权值(距离)
int u[N],v[N];//u[i]和v[i]分别表示第i条边的起点和终点
long long dis[N];//单源最短路径
const long long inf=(1LL<<60);
void ford(int s)
{
for(int i=0;i<=n+2;i++)
dis[i]=inf;
dis[s]=0;
for(int i=1;i<=n-1;i++)//枚举除终点外的所有点
for(int j=1;j<=m;j++)//枚举所有边
{
int x=u[j];//边j的起点
int y=v[j];//边j的终点
if(dis[x]<inf)//松弛
dis[y]=min(dis[y],dis[x]+w[j]);
}
} //就是这个板子,难受的雅痞
int main()
{
// cout<<inf;
int T;
cini(T);
while(T--)
{
cini(n);
cini(m);
for(int i=1; i<=m; i++)
{
int x,y;
long long z;
cini(x),cini(y),cinl(z);
u[i]=x;
v[i]=y;
w[i]=z;
}
for(int i=0;i<6;i++)
{
int x,y;
cini(x),cini(y);
ford(y);
long long z=dis[x];
u[++m]=x;
v[m]=y;
w[m]=-z;
printf("%lld\n",-z);
}
}
}
2019 ICPC 南京网络赛 H-Holy Grail的更多相关文章
- 2019 ICPC 南京网络赛 F Greedy Sequence
You're given a permutation aa of length nn (1 \le n \le 10^51≤n≤105). For each i \in [1,n]i∈[1,n], c ...
- 2019 ICPC南京网络赛 F题 Greedy Sequence(贪心+递推)
计蒜客题目链接:https://nanti.jisuanke.com/t/41303 题目:给你一个序列a,你可以从其中选取元素,构建n个串,每个串的长度为n,构造的si串要满足以下条件, 1. si ...
- 2019 ICPC 银川网络赛 H. Fight Against Monsters
It is my great honour to introduce myself to you here. My name is Aloysius Benjy Cobweb Dartagnan Eg ...
- 2019 ICPC 南昌网络赛
2019 ICPC 南昌网络赛 比赛时间:2019.9.8 比赛链接:The 2019 Asia Nanchang First Round Online Programming Contest 总结 ...
- 2019 ICPC南京网络预选赛 I Washing clothes 李超线段树
题意:有n个人,每个人有一件衣服需要洗,可以自己手洗花费t时间,也可以用洗衣机洗,但是洗衣机只有一台,即每个时刻最多只能有·一个人用洗衣机洗衣服.现在给你每个人最早可以开始洗衣服的时间,问当洗衣机的洗 ...
- 2019 ICPC上海网络赛 A 题 Lightning Routing I (动态维护树的直径)
题目: 给定一棵树, 带边权. 现在有2种操作: 1.修改第i条边的权值. 2.询问u到其他一个任意点的最大距离是多少. 题解: 树的直径可以通过两次 dfs() 的方法求得.换句话说,到任意点最远的 ...
- 2018 ICPC南京网络赛 Set(字典树 + 合并 + lazy更新)
题解:n个集合,你要进行m个操作.总共有3种操作.第一种,合并两个集合x和y.第二张,把特定的集合里面所有的数字加一.第三种,询问在某个集合里面,对于所有数字对2的k次方取模后,有多少个数字等于x. ...
- 2019年南京网络赛E题K Sum(莫比乌斯反演+杜教筛+欧拉降幂)
目录 题目链接 思路 代码 题目链接 传送门 思路 首先我们将原式化简: \[ \begin{aligned} &\sum\limits_{l_1=1}^{n}\sum\limits_{l_2 ...
- 2019 ICPC 沈阳网络赛 J. Ghh Matin
Problem Similar to the strange ability of Martin (the hero of Martin Martin), Ghh will random occurr ...
随机推荐
- wireshark抓包实战(六),过滤器
目录 一.抓包过滤器 1.语法来源 2.语法 二.显示过滤器 1.语法来源 2.关键要素 wireshark中,过滤器有两种,一种是抓包过滤器,一种是显示过滤器! 抓包过滤器适合大网络环境,配置与抓包 ...
- String 对象-->lastIndexOf() 方法
1.定义和用法 lastIndexOf() 方法可返回一个指定的字符串值最后出现的位置,如果指定第二个参数 start,则在一个字符串中的指定位置从后向前搜索. 语法: string.lastInde ...
- SpringMVC框架详细教程(二)
创建动态Web项目 1.创建动态Web项目: 打开Eclipse,在Package Explorer右击,创建项目,选择动态Web项目(Dynamic Web Project). 填写项目名称,并选择 ...
- Erlang语言之简述及安装
1. 简述 Erlang在1991年由爱立信公司向用户推出了第一个版本,经过不断的改进完善和发展,在1996年爱立信又为所有的Erlang用户提供了一个非常实用且稳定的OTP软件库并在1998年发布了 ...
- git如何清除远程 __pycahce__ 文件
第一步,清除已经存在的缓存文件 >> git rm -r -f --cached */__pycache__ rm 'common/__pycache__/__init__.cpython ...
- JAVA—线程(Thread)
1.线程的状态有哪些 我记得在操作系统原理的书上有一张具体的图,暂时找不到书... new:新建状态,被创建出来后未启动时的线程状态. runnable:就绪状态,表示可以运行. blocked:阻塞 ...
- python基础:如何使用python pandas将DataFrame转换为dict
之前在知乎上看到有网友提问,如何将DataFrame转换为dict,专门研究了一下,pandas在0.21.0版本中是提供了这个方法的.下面一起学习一下,通过调用help方法,该方法只需传入一个参数, ...
- L - Neko does Maths CodeForces - 1152C 数论(gcd)
题目大意:输入两个数 a,b,输出一个k使得lcm(a+k,b+k)尽可能的小,如果有多个K,输出最小的. 题解: 假设gcd(a+k,b+k)=z; 那么(a+k)%z=(b+k)%z=0. a%z ...
- D. Minimax Problem Codeforces 1288D binary_search+二进制
题目大意:n*m的矩阵中,找到两行数,可以形成两个一维数组,数组1的位置i和数组2的位置i去最大构成新数组b的元素b[i],最终目的要使数组b中最小的数尽可能的大 题解: m的范围是(1,8),比较小 ...
- 申请elasticsearch中x-pack插件许可证及授权
前提: ES主机中elasticsearch x-pack插件许可证申请使用期限为1年,到期后x-pack插件将不再可用,重启elasticsearch服务后日志会提示一下警告,如图所 ...