As the current heir of a wizarding family with a long history,unfortunately, you find yourself forced to participate in the cruel Holy Grail War which has a reincarnation of sixty years.However,fortunately,you summoned a Caster Servant with a powerful Noble Phantasm.When your servant launch her Noble Phantasm,it will construct a magic field,which is actually a directed graph consisting of n vertices and m edges.More specifically,the graph satisfies the following restrictions :

  • Does not have multiple edges(for each pair of vertices x and y, there is at most one edge between this pair of vertices in the graph) and does not have self-loops(edges connecting the vertex with itself).
  • May have negative-weighted edges.
  • Does not have a negative-weighted loop.
  • n<=300 , m<=500.

Currently,as your servant's Master,as long as you add extra 6 edges to the graph,you will beat the other 6 masters to win the Holy Grail.

However,you are subject to the following restrictions when you add the edges to the graph:

  • Each time you add an edge whose cost is c,it will cost you c units of Magic Value.Therefore,you need to add an edge which has the lowest weight(it's probably that you need to add an edge which has a negative weight).
  • Each time you add an edge to the graph,the graph must not have negative loops,otherwise you will be engulfed by the Holy Grail you summon.

Input

Input data contains multiple test cases. The first line of input contains integer t — the number of testcases (1 \le t \le 51≤t≤5).

For each test case,the first line contains two integers n,m,the number of vertices in the graph, the initial number of edges in the graph.

Then m lines follow, each line contains three integers x, y and w (0 \le x,y<n0≤x,y<n,-10^9−109≤w≤10^9109, x \not = yx​=y) denoting an edge from vertices x to y (0-indexed) of weight w.

Then 6 lines follow, each line contains two integers s,t denoting the starting vertex and the ending vertex of the edge you need to add to the graph.

It is guaranteed that there is not an edge starting from s to t before you add any edges and there must exists such an edge which has the lowest weight and satisfies the above restrictions, meaning the solution absolutely exists for each query.

Output

For each test case,output 66 lines.

Each line contains the weight of the edge you add to the graph.

这个题,我收获很大,不是在算法上的提升,而是在与对于自己的学习方式的改进,这个题暴露出诸多问题,如下:

1.对于自己写的模板,没有经过验证,使用起来,漏洞百出。

2.对于用别人的模板,看着难受,改起来费劲容易出错。

3.鉴于上一条,就要写第一条,所以以后改板子,写板子都要记下来,最好是每次自己写,现在有点后悔。

所以导致超时4遍,wa了4遍,所以吸取我的教训,除了非常固定的模板,其他都自己写,养成习惯,每次写都是对于这个算法思想的再认识。

这个题目的思路我是秒出的,因为打眼一看就能看出这个题目说的是带负边权的最短路问题,现在我们将范围缩小,只剩下了SPFA,Bellman-ford,和Floyd。 虽然这个题Floyd能过,但是不是这个题的正解。这个题首选的是bellman 或者SPFA,然后就是求填边之后的非负最小环问题。共跑6遍Bellman-ford

#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
#define Swap(a,b) a^=b^=a^=b
#define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define speed ios_base::sync_with_stdio(0)
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define INF 0x3f3f3f3f
#define maxn 305
#define esp 1e-9
#define mp(a,b) make_pair(a,b)
using namespace std;
typedef long long ll;
//-----------------------*******----------------------------//
const int N=1000;
int n,m;//点数,边数,编号都从0开始
long long w[N];//w[i]表示第i条边的权值(距离)
int u[N],v[N];//u[i]和v[i]分别表示第i条边的起点和终点
long long dis[N];//单源最短路径
const long long inf=(1LL<<60);
void ford(int s)
{
for(int i=0;i<=n+2;i++)
dis[i]=inf;
dis[s]=0;
for(int i=1;i<=n-1;i++)//枚举除终点外的所有点
for(int j=1;j<=m;j++)//枚举所有边
{
int x=u[j];//边j的起点
int y=v[j];//边j的终点
if(dis[x]<inf)//松弛
dis[y]=min(dis[y],dis[x]+w[j]);
}
} //就是这个板子,难受的雅痞
int main()
{
// cout<<inf;
int T;
cini(T);
while(T--)
{
cini(n);
cini(m);
for(int i=1; i<=m; i++)
{
int x,y;
long long z;
cini(x),cini(y),cinl(z);
u[i]=x;
v[i]=y;
w[i]=z;
}
for(int i=0;i<6;i++)
{
int x,y;
cini(x),cini(y);
ford(y);
long long z=dis[x];
u[++m]=x;
v[m]=y;
w[m]=-z;
printf("%lld\n",-z); }
}
}

2019 ICPC 南京网络赛 H-Holy Grail的更多相关文章

  1. 2019 ICPC 南京网络赛 F Greedy Sequence

    You're given a permutation aa of length nn (1 \le n \le 10^51≤n≤105). For each i \in [1,n]i∈[1,n], c ...

  2. 2019 ICPC南京网络赛 F题 Greedy Sequence(贪心+递推)

    计蒜客题目链接:https://nanti.jisuanke.com/t/41303 题目:给你一个序列a,你可以从其中选取元素,构建n个串,每个串的长度为n,构造的si串要满足以下条件, 1. si ...

  3. 2019 ICPC 银川网络赛 H. Fight Against Monsters

    It is my great honour to introduce myself to you here. My name is Aloysius Benjy Cobweb Dartagnan Eg ...

  4. 2019 ICPC 南昌网络赛

    2019 ICPC 南昌网络赛 比赛时间:2019.9.8 比赛链接:The 2019 Asia Nanchang First Round Online Programming Contest 总结 ...

  5. 2019 ICPC南京网络预选赛 I Washing clothes 李超线段树

    题意:有n个人,每个人有一件衣服需要洗,可以自己手洗花费t时间,也可以用洗衣机洗,但是洗衣机只有一台,即每个时刻最多只能有·一个人用洗衣机洗衣服.现在给你每个人最早可以开始洗衣服的时间,问当洗衣机的洗 ...

  6. 2019 ICPC上海网络赛 A 题 Lightning Routing I (动态维护树的直径)

    题目: 给定一棵树, 带边权. 现在有2种操作: 1.修改第i条边的权值. 2.询问u到其他一个任意点的最大距离是多少. 题解: 树的直径可以通过两次 dfs() 的方法求得.换句话说,到任意点最远的 ...

  7. 2018 ICPC南京网络赛 Set(字典树 + 合并 + lazy更新)

    题解:n个集合,你要进行m个操作.总共有3种操作.第一种,合并两个集合x和y.第二张,把特定的集合里面所有的数字加一.第三种,询问在某个集合里面,对于所有数字对2的k次方取模后,有多少个数字等于x. ...

  8. 2019年南京网络赛E题K Sum(莫比乌斯反演+杜教筛+欧拉降幂)

    目录 题目链接 思路 代码 题目链接 传送门 思路 首先我们将原式化简: \[ \begin{aligned} &\sum\limits_{l_1=1}^{n}\sum\limits_{l_2 ...

  9. 2019 ICPC 沈阳网络赛 J. Ghh Matin

    Problem Similar to the strange ability of Martin (the hero of Martin Martin), Ghh will random occurr ...

随机推荐

  1. MySQL InnoDB存储引擎体系架构 —— 索引高级

    转载地址:https://mp.weixin.qq.com/s/HNnzAgUtBoDhhJpsA0fjKQ 世界上只两件东西能震撼人们的心灵:一件是我们心中崇高的道德标准:另一件是我们头顶上灿烂的星 ...

  2. Python中关于字符串你应该知道这些...

    # Python中字符串的常见用法### 定义:带有双引号/单引号/三引号### 双引号:适用于所写的字符串里没有双引号的.例如:"凡是“辛苦”必是礼物"报错​### 单引号:适用 ...

  3. Android MonkeyTalk测试

    Android MonkeyTalk测试 MonkeyTalk可以用于压力测试,正因为这点所以才选择MonkeyTalk进行测试,相对于Monkey测试,目前个人发现的有点在于,MonkeyTalk是 ...

  4. Multiple Books多账薄

    有些公司因管理需要配置多本账薄,比如管理帐和PRC,那么在Epicor 10中如何实现呢? 1创建 new Book: 2 created a map: Financial Management -& ...

  5. 杭电1080 J - Human Gene Functions

    题目大意: 两个字符串,可以再中间任何插入空格,然后让这两个串匹配,字符与字符之间的匹配有各自的分数,求最大分数 最长公共子序列模型. dp[i][j]表示当考虑吧串1的第i个字符和串2的第j个字符时 ...

  6. Linux安装PHP的Redis扩展(已安装Redis)

    1.下载需要的php操作redis的扩展包 下载地址 http://pecl.php.net/package/redis    下载对应php版本,我的php版本为7.3,下载的是最新的版本5.0.2 ...

  7. v&n赛 ML 第一步(python解决)

    题目链接 给了70组x,y,根据提示,是求拟合曲线,再通过x求y 知道MATLAB应该录入就能解决吧,但是没下这软件,试试用python解决 #coding:utf- from pwn import ...

  8. [Abp vNext 入坑分享] - 3.简单的用户模块功能开发

    一.简要说明 本篇文章开始进行业务模块的开发模拟,借助user模块来进行业务开发,主要是用户相关的基础操作.主要是先使用Users来体验整个开发的流程.主要是先把一个基础流程跑顺利,在这里我并不会过于 ...

  9. AOP-SheepAspect

    转载https://www.cnblogs.com/InCsharp/p/5902133.html SheepAspect 简介以及代码示列: SheepAspect是一个AOP框架为.NET平台,深 ...

  10. Python修改paramiko模块开发运维审计保垒机

    目前市面上,专门做IT审计堡垒机的厂商有很多,他们的产品都有一个特点,那就是基本上每台的售价都在20万以上.像我们做技术的,不可能每次待的公司都是大公司,那么在小公司,是不太可能投资20多万买一台硬件 ...