2019 ICPC 南京网络赛 H-Holy Grail
As the current heir of a wizarding family with a long history,unfortunately, you find yourself forced to participate in the cruel Holy Grail War which has a reincarnation of sixty years.However,fortunately,you summoned a Caster Servant with a powerful Noble Phantasm.When your servant launch her Noble Phantasm,it will construct a magic field,which is actually a directed graph consisting of n vertices and m edges.More specifically,the graph satisfies the following restrictions :
- Does not have multiple edges(for each pair of vertices x and y, there is at most one edge between this pair of vertices in the graph) and does not have self-loops(edges connecting the vertex with itself).
- May have negative-weighted edges.
- Does not have a negative-weighted loop.
- n<=300 , m<=500.
Currently,as your servant's Master,as long as you add extra 6 edges to the graph,you will beat the other 6 masters to win the Holy Grail.
However,you are subject to the following restrictions when you add the edges to the graph:
- Each time you add an edge whose cost is c,it will cost you c units of Magic Value.Therefore,you need to add an edge which has the lowest weight(it's probably that you need to add an edge which has a negative weight).
- Each time you add an edge to the graph,the graph must not have negative loops,otherwise you will be engulfed by the Holy Grail you summon.
Input
Input data contains multiple test cases. The first line of input contains integer t — the number of testcases (1 \le t \le 51≤t≤5).
For each test case,the first line contains two integers n,m,the number of vertices in the graph, the initial number of edges in the graph.
Then m lines follow, each line contains three integers x, y and w (0 \le x,y<n0≤x,y<n,-10^9−109≤w≤10^9109, x \not = yx=y) denoting an edge from vertices x to y (0-indexed) of weight w.
Then 6 lines follow, each line contains two integers s,t denoting the starting vertex and the ending vertex of the edge you need to add to the graph.
It is guaranteed that there is not an edge starting from s to t before you add any edges and there must exists such an edge which has the lowest weight and satisfies the above restrictions, meaning the solution absolutely exists for each query.
Output
For each test case,output 66 lines.
Each line contains the weight of the edge you add to the graph.
这个题,我收获很大,不是在算法上的提升,而是在与对于自己的学习方式的改进,这个题暴露出诸多问题,如下:
1.对于自己写的模板,没有经过验证,使用起来,漏洞百出。
2.对于用别人的模板,看着难受,改起来费劲容易出错。
3.鉴于上一条,就要写第一条,所以以后改板子,写板子都要记下来,最好是每次自己写,现在有点后悔。
所以导致超时4遍,wa了4遍,所以吸取我的教训,除了非常固定的模板,其他都自己写,养成习惯,每次写都是对于这个算法思想的再认识。
这个题目的思路我是秒出的,因为打眼一看就能看出这个题目说的是带负边权的最短路问题,现在我们将范围缩小,只剩下了SPFA,Bellman-ford,和Floyd。 虽然这个题Floyd能过,但是不是这个题的正解。这个题首选的是bellman 或者SPFA,然后就是求填边之后的非负最小环问题。共跑6遍Bellman-ford
#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
#define Swap(a,b) a^=b^=a^=b
#define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define speed ios_base::sync_with_stdio(0)
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define INF 0x3f3f3f3f
#define maxn 305
#define esp 1e-9
#define mp(a,b) make_pair(a,b)
using namespace std;
typedef long long ll;
//-----------------------*******----------------------------//
const int N=1000;
int n,m;//点数,边数,编号都从0开始
long long w[N];//w[i]表示第i条边的权值(距离)
int u[N],v[N];//u[i]和v[i]分别表示第i条边的起点和终点
long long dis[N];//单源最短路径
const long long inf=(1LL<<60);
void ford(int s)
{
for(int i=0;i<=n+2;i++)
dis[i]=inf;
dis[s]=0;
for(int i=1;i<=n-1;i++)//枚举除终点外的所有点
for(int j=1;j<=m;j++)//枚举所有边
{
int x=u[j];//边j的起点
int y=v[j];//边j的终点
if(dis[x]<inf)//松弛
dis[y]=min(dis[y],dis[x]+w[j]);
}
} //就是这个板子,难受的雅痞
int main()
{
// cout<<inf;
int T;
cini(T);
while(T--)
{
cini(n);
cini(m);
for(int i=1; i<=m; i++)
{
int x,y;
long long z;
cini(x),cini(y),cinl(z);
u[i]=x;
v[i]=y;
w[i]=z;
}
for(int i=0;i<6;i++)
{
int x,y;
cini(x),cini(y);
ford(y);
long long z=dis[x];
u[++m]=x;
v[m]=y;
w[m]=-z;
printf("%lld\n",-z);
}
}
}
2019 ICPC 南京网络赛 H-Holy Grail的更多相关文章
- 2019 ICPC 南京网络赛 F Greedy Sequence
You're given a permutation aa of length nn (1 \le n \le 10^51≤n≤105). For each i \in [1,n]i∈[1,n], c ...
- 2019 ICPC南京网络赛 F题 Greedy Sequence(贪心+递推)
计蒜客题目链接:https://nanti.jisuanke.com/t/41303 题目:给你一个序列a,你可以从其中选取元素,构建n个串,每个串的长度为n,构造的si串要满足以下条件, 1. si ...
- 2019 ICPC 银川网络赛 H. Fight Against Monsters
It is my great honour to introduce myself to you here. My name is Aloysius Benjy Cobweb Dartagnan Eg ...
- 2019 ICPC 南昌网络赛
2019 ICPC 南昌网络赛 比赛时间:2019.9.8 比赛链接:The 2019 Asia Nanchang First Round Online Programming Contest 总结 ...
- 2019 ICPC南京网络预选赛 I Washing clothes 李超线段树
题意:有n个人,每个人有一件衣服需要洗,可以自己手洗花费t时间,也可以用洗衣机洗,但是洗衣机只有一台,即每个时刻最多只能有·一个人用洗衣机洗衣服.现在给你每个人最早可以开始洗衣服的时间,问当洗衣机的洗 ...
- 2019 ICPC上海网络赛 A 题 Lightning Routing I (动态维护树的直径)
题目: 给定一棵树, 带边权. 现在有2种操作: 1.修改第i条边的权值. 2.询问u到其他一个任意点的最大距离是多少. 题解: 树的直径可以通过两次 dfs() 的方法求得.换句话说,到任意点最远的 ...
- 2018 ICPC南京网络赛 Set(字典树 + 合并 + lazy更新)
题解:n个集合,你要进行m个操作.总共有3种操作.第一种,合并两个集合x和y.第二张,把特定的集合里面所有的数字加一.第三种,询问在某个集合里面,对于所有数字对2的k次方取模后,有多少个数字等于x. ...
- 2019年南京网络赛E题K Sum(莫比乌斯反演+杜教筛+欧拉降幂)
目录 题目链接 思路 代码 题目链接 传送门 思路 首先我们将原式化简: \[ \begin{aligned} &\sum\limits_{l_1=1}^{n}\sum\limits_{l_2 ...
- 2019 ICPC 沈阳网络赛 J. Ghh Matin
Problem Similar to the strange ability of Martin (the hero of Martin Martin), Ghh will random occurr ...
随机推荐
- 2017蓝桥杯承压计算(C++ B组)
标题:承压计算X星球的高科技实验室中整齐地堆放着某批珍贵金属原料.每块金属原料的外形.尺寸完全一致,但重量不同.金属材料被严格地堆放成金字塔形. ...
- python 删除三天前的日志.py
#获取所有文件def file(): for cur_dir, dirs, files in os.walk(r'/学习/接口自动化/BestTest/作业/logs'): # cur_dir(当前路 ...
- C#多线程系列(1):Thread
目录 1,获取当前线程信息 2,管理线程状态 2.1 启动与参数传递 2.1.1 ParameterizedThreadStart 2.1.2 使用静态变量或类成员变量 2.1.3 委托与Lambda ...
- 史上最详细mac安装Qt教程
史上最详细mac安装Qt教程,小白看过来! 这是一篇非常适合Qt入门小白的的安装Qt教程,因为这学期我们小组的一个关于高速救援的项目要用到Qt与web进行交互式展现相关的图像,由于没有MSVC这个插件 ...
- lr使用soap协议,来对webservice接口进行测试
实际项目中基于WSDL来测试WebService的情况并不多,WSDL并不是WebService测试的最佳选择. 最主要的原因还是因为WSDL文档过于复杂. 在案例(天气预报WebService服务) ...
- 小程序以及H5页面上IphoneX底部安全区域小黑条适配问题
背景 公司项目开发中,发现iPhoneX上吸底元素存在被小黑条遮挡的问题 原因 在苹果 iPhoneX .iPhone XR等机型上,物理Home键被取消,改为底部小黑条替代home键功能,从而导致吸 ...
- 编写高质量Python程序(三)基础语法
本系列文章为<编写高质量代码--改善Python程序的91个建议>的精华汇总. 关于导入模块 Python的3种引入外部模块的方式:import语句.from ... import ... ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(二)之Introduction to Objects
The genesis of the computer revolution was a machine. The genesis of out programming languages thus ...
- 五分钟!用python绘制漂亮的系统架构图
Diagrams 是一个基于Python绘制云系统架构的模块,它能够通过非常简单的描述就能可视化架构,并支持以下6个云产品的图标: AWS.Azure.GCP.K8s.阿里云 和 Oracle 云 基 ...
- python批量爬取动漫免费看!!
实现效果 运行环境 IDE VS2019 Python3.7 Chrome.ChromeDriver Chrome和ChromeDriver的版本需要相互对应 先上代码,代码非常简短,包含空行也才50 ...