一、用动画实现汉诺塔问题:

import turtle

class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) == 0
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - 1]
def size(self):
return len(self.items) def drawpole_3():#画出汉诺塔的poles
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize(10)
t.speed(100)
t.goto(400*(k-1), 100)
t.down()
t.goto(400*(k-1), -100)
t.goto(400*(k-1)-20, -100)
t.goto(400*(k-1)+20, -100)
drawpole_1(0)#画出汉诺塔的poles[0]
drawpole_1(1)#画出汉诺塔的poles[1]
drawpole_1(2)#画出汉诺塔的poles[2] def creat_plates(n):#制造n个盘子
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(1,8-i)
plates[i].goto(-400,-90+20*i)
plates[i].showturtle()
return plates def pole_stack():#制造poles的栈
poles=[Stack() for i in range(3)]
return poles def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
mov=poles[fp].peek()
plates[mov].goto((fp-1)*400,150)
plates[mov].goto((tp-1)*400,150)
l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
plates[mov].goto((tp-1)*400,-90+20*l) def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
if height >= 1:
moveTower(plates,poles,height-1,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-1,withPole,toPole,fromPole) myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()

  

二、汉诺塔问题

有三个座A、B、C,A座有n个盘子,要求把A座上的n个盘子移动到C座上,每次只能移动一个盘子,并且移动过程中始终保持大盘在下,小盘在上,在移动过程中可以利用B盘来放盘子

输出格式:输出移动的步骤,每行一步,如从A座移动到C盘,输出“A-->C”

def hanoi(n,x,y,z):
if n==1:
print(x,'-->',z)
else:
hanoi(n-1,x,z,y)
hanoi(1,x,y,z)
hanoi(n-1,y,x,z)
n=int(input())
hanoi(n,'A','B','C')

  

用python实现汉诺塔问题的更多相关文章

  1. python 游戏 —— 汉诺塔(Hanoita)

    python 游戏 —— 汉诺塔(Hanoita) 一.汉诺塔问题 1. 问题来源 问题源于印度的一个古老传说,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆 ...

  2. python解决汉诺塔问题

    今天刚刚在博客园安家,不知道写点什么,前两天刚刚学习完python 所以就用python写了一下汉诺塔算法,感觉还行拿出来分享一下 首先看一下描述: from :http://baike.baidu. ...

  3. 【学习】Python解决汉诺塔问题

    参考文章:http://www.cnblogs.com/dmego/p/5965835.html   一句话:学程序不是目的,理解就好:写代码也不是必然,省事最好:拿也好,查也好,解决问题就好!   ...

  4. Python实现汉诺塔问题的可视化(以动画的形式展示移动过程)

    学习Python已经有一段时间了,也学习了递归的方法,而能够实践该方法的当然就是汉诺塔问题了,但是这次我们不只是要完成对汉诺塔过程的计算,还要通过turtle库来体现汉诺塔中每一层移动的过程. 一.设 ...

  5. python递归——汉诺塔

    汉诺塔的传说 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了 ...

  6. Python之汉诺塔递归运算

    汉诺塔问题是一个经典的问题.汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆 ...

  7. python 实现汉诺塔

    汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘. 大梵天命令婆罗门把圆盘从下面开始按大小顺 ...

  8. python实现汉诺塔

    经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --&g ...

  9. python实现汉诺塔移动

    汉诺塔问题 汉诺塔是根据一个传说形成的一个问题.汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大 ...

  10. python实现汉诺塔问题

    汉诺塔问题可以简单描述成为将a柱子上的圆盘按一定规则借助b柱子完美地复制到c柱子上.现假设有a,b,c三根柱子,a柱子上的圆盘从上到下依次标号为1,2,3,……,n,且为递增状态.规则:每次移动一个盘 ...

随机推荐

  1. js基石之---es7的decorator修饰器

    es7的decorator修饰器 装饰器(Decorator)是一种与类(class)相关的语法,用来注释或修改类和类方法. decorator就是给类添加或修改类的变量与方法的. 装饰器是一种函数, ...

  2. C# 判断文件格式的一些总结

    前提概述: 项目中 经常会有上传图片的地方  有的时候需要对图片类型做一些要求   这个时候就需要一些判断   虽然前段上传的时候可以去做类型的限制  或者后台接受的时候从file的type 中获取图 ...

  3. 【Hadoop离线基础总结】Hue与oozie集成

    目录 1.停止oozie与hue的进程 2.修改oozie的配置文件 3.修改hue的配置文件 4.启动hue与oozie的进程 5.页面访问hue 1.停止oozie与hue的进程 bin/oozi ...

  4. input唤起键盘影响移动端底部fixed定位

    主要代码如下: public docmHeight = document.documentElement.clientHeight || document.body.clientHeight; // ...

  5. 装完B就跑,这几个Linux指令真的Diǎo

    本文介绍一些有趣的指令,实用或者可以装逼,不妨自己也来试试看: 文章目录 1 故事的开局 2 杰哥的表演 2.1 sl 2.2 htop 2.3 gcp 2.4 hollywood 2.5 cmatr ...

  6. ARM-Linux Gcc 交叉编译环境搭建

    1 NFS网络文件系统搭建 测试宿主机与目标板ping通 目标板上某个文件夹(例如mnt)挂载到宿主机(192.168.1.111)的/home/nfs_dir文件夹下 mount –t nfs –o ...

  7. 利用Asp.net和Sql Server实现留言板功能

    本教程设及到:使用SQL Server查询分析器创建数据库:SQL查询语句常用的一些属性值:触发器创建和使用:存储过程的创建,ASP使用存储过程. 正文: 一.创建数据库: 创建一个feedback数 ...

  8. 一文讲透Cluster API的前世、今生与未来

    作者:Luke Addison 原文链接:https://blog.jetstack.io/blog/cluster-api-past-present-and-future/ Cluster API是 ...

  9. tp5.1使用路径常量

    echo "app_path=========".Env::get('app_path')."</br>"; echo "root_pat ...

  10. PHP函数禁用绕过

    在渗透测试过程中可能经常会遇到上传webshell后,由于php.ini配置禁用了一些如exec(),shell_exec(),system()等执行系统命令的函数,导致无法执行系统命令,就此问题给出 ...