POJ3735
题目链接:http://poj.org/problem?id=3735
解题思路:
先构造一个(n+1)*(n+1)的单位矩阵E,在此基础上进行操作:
1、g i -------------> E[0][i] ++;
2、s i j -------------> for(int k=0;k<=n;k++) swap(E[k][i],E[k][j]);
3、e i -------------> for(int k=0;k<=n;k++) E[k][i]=0;
上面的这一个部分本来我是构造多个单位矩阵,在单位矩阵上进行操作的,操作后的矩阵相乘的结果就是总的操作,结果就是一个TLE。。。后来改成这样才AC了。
然后再构造一个矩阵A,A只有左上角为1,其他的都为0。操作m次,其实就是A*(E^m)。矩阵快速幂,上!
AC代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=;
struct Matrix{
ll mat[maxn][maxn];
};
Matrix Multiply(Matrix x,Matrix y,int n){
Matrix temp;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
temp.mat[i][j]=;
for(int k=;k<=n;k++){
if(x.mat[i][k]&&y.mat[k][j]) //没有这个优化TLE
temp.mat[i][j]+=(x.mat[i][k]*y.mat[k][j]);
}
}
}
return temp;
}
Matrix Fast_Power(Matrix a,int m,int n){
Matrix res;
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
if(i==j) res.mat[i][j]=;
else res.mat[i][j]=res.mat[j][i]=;
}
}
while(m){
if(m&) res=Multiply(res,a,n);
m>>=;
a=Multiply(a,a,n);
}
return res;
} int main(){
Matrix rt;
int n,m,k,a,b;
char t[];
while(scanf("%d%d%d",&n,&m,&k)==&&(n||m||k)){
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
if(i==j) rt.mat[i][j]=;
else rt.mat[i][j]=rt.mat[j][i]=;
}
}//构造出一个(n+1)*(n+1)的单位矩阵
while(k--){
scanf("%s",t);
if(t[]=='g'){
scanf("%d",&a);
rt.mat[][a]++;
}
else if(t[]=='e'){
scanf("%d",&a);
for(int i=;i<=n;i++)
rt.mat[i][a]=;
}
else{
scanf("%d %d",&a,&b);
for(int i=;i<=n;i++){
if(rt.mat[i][a]||rt.mat[i][b])
swap(rt.mat[i][a],rt.mat[i][b]);
}
}
}
if(m==){
for(int i=;i<n;i++){
if(i!=) printf(" ");
printf("");
}
}
else{
Matrix t;
memset(t.mat,,sizeof(t));
t.mat[][]=;
Matrix ret=Multiply(t,Fast_Power(rt,m,n),n);
for(int i=;i<=n;i++){
if(i!=) printf(" ");
printf("%lld",ret.mat[][i]);
}
}
printf("\n");
}
return ;
}
POJ3735的更多相关文章
- [poj3735] Training little cats_矩乘快速幂
Training little cats poj-3735 题目大意:给你n个数,k个操作,将所有操作重复m次. 注释:三种操作,将第i个盒子+1,交换两个盒子中的个数,将一个盒子清空.$1\le m ...
- POJ3735 矩阵
题意:有n只猫咪,开始时每只猫咪有花生0颗,现有一组操作,由下面三个中的k个操作组成: 1. g i 给i只猫咪一颗花生米 2. e i 让第i只猫咪吃掉它拥有的所有花生米 ...
- Training little cats poj3735
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9299 Accepted: 2 ...
- xiaowuga poj3735—Training little cats(特殊操作转化为矩阵操作)
题意:有n只猫,对其进行k次操作,然后反复这样操作m次. 其中g 表示 i 猫加1, e表示 i 猫为0:s表示 i 与 j 猫互换. 解释一下样例: 3 1 6g 1g 2g 2s 1 2g 3e ...
- Training little cats(poj3735,矩阵快速幂)
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10737 Accepted: ...
- poj3735—Training little cats(特殊操作转化为矩阵操作)
题目链接:http://poj.org/problem?id=3735 题目意思: 调教猫咪:有n只饥渴的猫咪,现有一组羞耻连续操作,由k个操作组成,全部选自: 1. g i 给第i只猫咪一颗花生 2 ...
- POJ3735【矩阵快速幂】
逛了一圈...觉得这篇讲的比较清楚:传送门~ 简要概括: 1.线性代数的知识,单位矩阵的利用:(如果不知道单位矩阵的,先去补习一下线代,做几题行列式就会了): 2.然后构造好矩阵以后,直接做M次乘积运 ...
- [POJ3735]Training little cats
题目:Training little cats 链接:http://poj.org/problem?id=3735 分析: 1)将操作用矩阵表示出来,然后快速幂优化. 2)初始矩阵:$ \left[ ...
- ACM之路(18)—— 矩阵
矩阵是干什么的呢?一句话来说就是,知道相邻两个函数的递推关系和第一个数,让你递推到第n个数.显然,如果n很大,那么一个一个递推过去是会超时的.所以矩阵就是用来解决这种快速递推的问题的. 比方说斐波那契 ...
随机推荐
- 通过transmittable-thread-local源码理解线程池线程本地变量传递的原理
前提 最近一两个月花了很大的功夫做UCloud服务和中间件迁移到阿里云的工作,没什么空闲时间撸文.想起很早之前写过ThreadLocal的源码分析相关文章,里面提到了ThreadLocal存在一个不能 ...
- Vue-cli3.0下的雪碧图插件webpack-spritesmith配置方法
在前端项目中,为了减少对图片的请求次数,一般而言需要进行雪碧图的配置.即将多张小图标合并成一张图片,这样页面中的小图标都在一张图片上,只需请求一张图片,就可以通过CSS设置各个小图标的显示,利于节省带 ...
- mac OS 查看开机/关机/重启记录
last 查看最近的开关机.登录用户等记录 以及操作时间节点. last | grep reboot 查看重启记录 last | grep shutdown 查看关机记录
- Git初始化本地代码及提交到服务器
2019独角兽企业重金招聘Python工程师标准>>> 1.先安装Git客户端 2.进入需要提交的文件夹目录 3.打开Git Bash,点击右键中的Git Bash 打开git命令窗 ...
- mysql 5.7 MGR
最近看了一下mysql5.7的MGR集群挺不错的,有单主和多主模式,于是乎搭建测试了一下效果还不错,我指的不错是搭建和维护方面都比较简单.网上绝大多数都是单主模式,当然我这里也是,为了加深印象,特意记 ...
- 使用BottomNavigationView+ViewPager+Fragment的底部导航栏
2019独角兽企业重金招聘Python工程师标准>>> 使用BottomNavigationView做底部工具栏,使用ViewPager做页面切换,使用Fragment完成每个页面的 ...
- Java之JVM(初学者)
学习Java的第一次总结 1.Java程序的编译和执行 通过上图,我们轻易得出java执行过程:由javac编译为字节码文件,通过JVM转换为底层操作系统可识别的命令操作. 注意:①Java跨平台的始 ...
- .NET Core+WebApi+EF访问数据新增用户数据
新建一个.NET Core项目,我使用的IDE是VS2019 依次创建三个Core类库:第一个命名api.Model,第二个api.Common,第三个api.Bo 解释一下这个三类库的作用: 第一个 ...
- Entity framework 加载多层相关实体数据
Entity framework有3种加载数据的方式:懒汉式(Lazy loading),饿汉式(Eager loading),显示加载(Explicit loading).3种加载方式有各自的优缺点 ...
- csp-j2019游记
我一pj蒟蒻这点水平还来写游记? 算了,毕竟是第一次,记录一下吧 noip->csp 话说我跟竞赛是不是天生八字不合啊...... 小学的时候学小奥,等我开始报名比赛,当时似乎所有竞赛都被叫停了 ...