一、题目描述

对下面的图片进行滤波和边缘提取操作,请详细地记录每一步操作的步骤。



滤波操作可以用来过滤噪声,常见噪声有椒盐噪声和高斯噪声,椒盐噪声可以理解为斑点,随机出现在图像中的黑点或白点;高斯噪声可以理解为拍摄图片时由于光照等原因造成的噪声。

二、实现过程

1.加载原图

import cv2
#加载图片
img=cv2.imread("test14.bmp",0)
imgzi = cv2.putText(img, 'original', (40,25),cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0, 0), 2)
#显示图片
cv2.imshow('canny', img)
key = cv2.waitKey(0)
if key==27: #按esc键时,关闭所有窗口
print(key)
cv2.destroyAllWindows()

2.均值滤波

均值滤波是一种最简单的滤波处理,它取的是卷积核区域内元素的均值,用cv2.blur()实现,如3×3的卷积核:

mg=cv2.imread("test14.bmp",0)
blur = cv2.blur(img, (3, 3)) # 均值模糊
imgzi = cv2.putText(img, 'averagefilter ', (40,25),cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0, 0), 2)

3.中值滤波

中值又叫中位数,是所有数排序后取中间的值。中值滤波就是用区域内的中值来代替本像素值,所以那种孤立的斑点,如0或255很容易消除掉,适用于去除椒盐噪声和斑点噪声。中值是一种非线性操作,效率相比前面几种线性滤波要慢。

img = cv2.imread('test14.bmp', 0)

均值滤波vs中值滤波

median = cv2.medianBlur(img, 5) # 中值滤波

imgzi = cv2.putText(img, 'medianfilter ', (40,25),cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0, 0), 2)

4.高斯滤波



OpenCV中对应函数为cv2.GaussianBlur(src,ksize,sigmaX):

img = cv2.imread('test14.bmp')
#高斯滤波
gaussian = cv2.GaussianBlur(img, (5, 5), 1) # 高斯滤波
imgzi = cv2.putText(img, 'gaussfilter ', (40,25),cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0, 0), 2)

5.高斯边缘检测

原理:首先对图像做高斯滤波,然后再求其拉普拉斯(Laplacian)二阶导数。

即图像与 Laplacian of the Gaussian function 进行滤波运算。

最后,通过检测滤波结果的零交叉(Zero crossings)可以获得图像或物体的边缘。

因而,也被简称为Laplacian-of-Gaussian (LoG)算子。

在第一步的基础上,可以通过拉普拉斯边缘检测来实现这一功能。Laplacian函数简介:dst = cv.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])。

import cv2
import numpy as np # Load the image in greyscale
img = cv2.imread('test14.bmp',0) # Apply Gaussian Blur
blur = cv2.GaussianBlur(img,(3,3),0) # Apply Laplacian operator in some higher datatype
laplacian = cv2.Laplacian(blur,cv2.CV_64F,5)

三、运行结果(效果)

四、问题及解决方法

老师给的第五步gauss边缘检测没有搜索到相关的资料,最后我查阅了官方文档,上面的GAUSS指高斯---拉普拉斯算法。我查阅了资料,完成了此次作业。解决方法:进行laplacian边缘检测得以实现。

Puttext函数不能输出中文,解决方法:使用英文输出

五、实验总结

我们要合理运用网络资源,特别时官方文档,学会查阅资料。

实验二、OpenCV图像滤波的更多相关文章

  1. CUDA二维纹理内存+OpenCV图像滤波

    CUDA和OpenCV混合编程,使用CUDA的纹理内存,实现图像的二值化以及滤波功能. #include <cuda_runtime.h> #include <highgui/hig ...

  2. OpenCV成长之路:图像滤波

    http://ronny.blog.51cto.com/8801997/1394138 OpenCV成长之路:图像滤波 2014-04-11 14:28:44 标签:opencv 边缘检测 sobel ...

  3. opencv学习之路(12)、图像滤波

    一.图像滤波简介 二.方框滤波——boxFilter() #include<opencv2/opencv.hpp> using namespace cv; void main(){ Mat ...

  4. opencv第三课,图像滤波

    1.介绍 OpenCV图像处理技术中比较热门的图像滤波操作主要被分为了两大类:线性邻域滤波和非线性滤波.线性邻域滤波常见的有“方框滤波“,”均值滤波“和”高斯滤波“三种,二常见的非线性滤波主要是中值滤 ...

  5. 图像滤波与OpenCV中的图像平滑处理

    .About图像滤波 频率:可以这样理解图像频率,图像中灰度的分布构成一幅图像的纹理.图像的不同本质上是灰度分布规律的不同.但是诸如"蓝色天空"样的图像有着大面积近似的灰度强度,而 ...

  6. 第十三节,OPenCV学习(二)图像的简单几何变换

    图像的简单几何变换 几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排 适当的几何变换可以最大程度地消除由于成像角度.透视关系乃至镜头自身原因所造成的几何失真所产生的的负面影响. 一.图像 ...

  7. CV_图像滤波[转]---python+opencv均值滤波,高斯滤波,中值滤波,双边滤波

    1.图像滤波算法(cv2) https://blog.csdn.net/qq_27261889/article/details/80822270 2.

  8. OpenCV3入门(六)图像滤波

    1.图像滤波理论 1.1图像滤波理论 图像滤波即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作.消除图像中的噪声又叫做图像滤波或平滑,滤波的目的有两个,一是突出特 ...

  9. opencv图像特征检测之斑点检测

    前面说过,图像特征点检测包括角点和斑点,今天来说说斑点,斑点是指二维图像中和周围颜色有颜色差异和灰度差异的区域,因为斑点代表的是一个区域,所以其相对于单纯的角点,具有更好的稳定性和更好的抗干扰能力. ...

随机推荐

  1. 3.PEP 8是什么?

    PEP 8是什么? PEP 8 is a coding convention, a set of recommendation, about how to write your Python code ...

  2. Elasticsearch: 权威指南 » 深入搜索 » 多字段搜索 » 多数字段 good

      跨字段实体搜索  » 多数字段编辑 全文搜索被称作是 召回率(Recall) 与 精确率(Precision) 的战场: 召回率 --返回所有的相关文档:精确率 --不返回无关文档.目的是在结果的 ...

  3. 中国AI觉醒 阿里王坚:云智能将成为大趋势

    2019独角兽企业重金招聘Python工程师标准>>> <麻省理工科技评论>新兴科技峰会EmTech China于北京召开.大会中,其中一项热门的讨论便是:中国和美国的科 ...

  4. MySQL UDF Dynamic Library Exploit in *nix

    /* } 本文转hackfreer51CTO博客,原文链接:http://blog.51cto.com/pnig0s1992/575448,如需转载请自行联系原作者

  5. chrome清除缓存、不使用缓存而刷新快捷键

    Ctrl+Shift+Del  清除Google浏览器缓存的快捷键 Ctrl+Shift+R  重新加载当前网页而不使用缓存内容 转载于:https://www.cnblogs.com/JAVA-ST ...

  6. Hadoop学习笔记(三) ——HDFS

    参考书籍:<Hadoop实战>第二版 第9章:HDFS详解 1. HDFS基本操作 @ 出现的bug信息 @-@ WARN util.NativeCodeLoader: Unable to ...

  7. CodeForces - 1245 B - Restricted RPS(贪心)

    Codeforces Round #597 (Div. 2) Let nn be a positive integer. Let a,b,ca,b,c be nonnegative integers ...

  8. XCTF练习题-WEB-webshell

    XCTF练习题-WEB-webshell 解题步骤: 1.观察题目,打开场景 2.根据题目提示,这道题很有可能是获取webshell,再看描述,一句话,基本确认了,观察一下页面,一句话内容,密码为sh ...

  9. 《C程序设计语言》 练习1-23

    问题描述 编写一个删除C语言程序中所有的注释语句.要正确处理带引号的字符串与字符常量.在C语言中,注释不允许嵌套. Write a program to remove all comments fro ...

  10. 说一说Web开发中两种常用的分层架构及其对应的代码模型

    昨天妹子让我帮她解决个问题,本以为可以轻松搞定,但是打开他们项目的一瞬间,我头皮发麻.本身功能不多的一个小项目,解决方案里竟然有几十个类库.仅仅搞明白各个类库的作用,代码层次之间的引用关系就花了一个多 ...