===================BETA RELEASE FEATRURE LIST====================

1. Log in and account manager for every user: private for every user.

2. Good UI design and comfortable users' experience: running smoothly and apply for the latest IOS9.

3. Personal photo search: give a txt query (words/sentences) and return the related photos.

4. Personal voice photo search: speech a word or a sentence and return the related photos.

5. Personal photo event segmantation: once you upload your photos, they will be classified according to the event automatically.

6. Personal photo qulity fiter: when you have some photos which is very similar and they contain the same informantion, they will be de-dulicated. If the photos have low quality, they will be removed.

7. Personal photo time and location filter: you can filter your photos according to the time or the GPS information.

8. Process remainder: The process will be displayed and you can check it anytime.

9. Personal photo tagging: the photos will be tagged according to their content automatically.

============================================================

================BEAT RELEASE PERFORMANCE STANDARD================

1. Parallel performance test: The Number of the simultaneous users should be more than 100, and the search result should be return in 3 second.

2. Search performance test: The relevance between the query and the return results accuracy should be more than 60%. Because our CNN model is the AlexNet which the performance upbound is 57.41%.

3. photo quality satisfication:  the score provided by the users according to the How they are satisified with the photo quality. It is divided into 5 ranks. And the user will give the socre of our ALPHA release about the photo quality and de-duplicate feature performance. The final average score result should be more than 4.

4. User experience satisfication: the score provided by the users according to the How they are satisified with the UI design. It is divided into 5 ranks, And the user will give the score of our product about the UI experience. The final average score results should be more than 4.

5. Voice Search test:

1). The voice return words test: for 50 users, let they read some sentence and return words should be hited at least 80%.

2). The NLP extract key words test: the NLP model should extract the key words as the query at leaset 80% when we give the groundtruth.

3). User satisfication test: the score provied by the users according to the degree they feel comfortable when they use the voice search. It is divided into 5 ranks, and the user will give the score. The final average score should more than 4.

============================================================

===================BEAT RELEASE TEST PALN========================

The unit tests will be devided into 4 parts with some test scripts :

1. Search framework test: our search framework is based on the ConSE [1].

we will test the following 3 things:

1). Words coverage rates: give a wordlist and test the hit rate.

2). Stability: whether give some words it will crash or not.

3). Speed: for each query, we will test the return time.

2. NLP mode test: our NLP is based on the stanford API.

we will test the following 2 things:

1). Extract key words accuracy: give a groundtruth and test the hit accuracy.

2). Stability:whether give some words it will crash or not.

3. Voice mode test: our Voice is based on the Oxford API:

we will test the following 2 things:

1). Translation accuracy: users read the sentence and we check the translation from voice sigal to txt accuracy.

2). Stability:whether read some words it will crash or not.

4. Azure server test:

we will deploy our project to the Azure server. The test process will be devided into 3 parts:

1).  Parallel performance test.

2).  loading ability test.

3).  Stability: long time running and no serious bug.

============================================================

Reference:

[1]. M. Norouzi and T. Mikolov. Zero-Shot Learning by Convex Combination of Semantic Embeddings

Feature list, Standard and Test plan for BETA Release 12/22/2015的更多相关文章

  1. Performance standard (ALPHA release) 12/17/2015

    ===================ALPHA RELEASE STANDARD====================== 1. Parallel performance test: The Nu ...

  2. Codeforces Beta Round #12 (Div 2 Only)

    Codeforces Beta Round #12 (Div 2 Only) http://codeforces.com/contest/12 A 水题 #include<bits/stdc++ ...

  3. stand up meeting for beta release plan 12/16/2015

    今天我们开会讨论一下beta版需要的feature,其中待定的feature是可选做的,如果有时间.其他都是必须实现的. 因为做插件的计划失败了,所以我们现在是pdf阅读器和取词查词加入生词本这两部分 ...

  4. ASP.NET5,MVC 6,Beta 7与VS 2015 RTM的兼容问题

    温馨提示:本文杂而乱,最终不知所云. Visual Studio 2015 RTM已经于2015年7月20号正式发布,我也在第一时间下载安装了起来. 虽然在5月份就开始使用RC版本,但是还是很期待正式 ...

  5. Codeforces Beta Round #12 (Div 2 Only) D. Ball sort/map

    D. Ball Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/problem/12/D D ...

  6. 团队作业7——第二次项目冲刺(Beta版本12.06)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:队员每个人提出对接下来需要做的事情的看法和意见,将需要做的任务更新到了leangoo中进行管理,产品完成了界面优化的设计,测试复现了之前 ...

  7. 团队作业7——第二次项目冲刺(Beta版本12.08)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:完成了排行榜的测试.上传头像功能的原型设计.界面优化 计划完成的内容:上传头像功能开发.测试.头像裁剪原型设计 每个人的工作 (有wor ...

  8. 团队作业7——第二次项目冲刺(Beta版本12.10)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:头像功能原型设计.头像裁剪功能.头像上传功能.测试 计划完成的内容:头像功能测试.bug修复 每个人的工作 (有work item 的I ...

  9. 团队作业7——第二次项目冲刺(Beta版本12.08-12.10)

    1.当天站立式会议照片 本次会议内容:1:每个人汇报自己完成的工作.2:组长分配各自要完成的任务. 2.每个人的工作 黄进勇:项目整合,后台代码. 李勇:前台界面优化. 何忠鹏:数据库模块. 郑希彬: ...

随机推荐

  1. hdu1686kmp果题

    kmp字符串匹配原理参考博客:https://blog.csdn.net/bqw18744018044/article/details/90516750 代码如下:(写一遍模板) #include&l ...

  2. Chrome80调整SameSite策略对IdentityServer4的影响以及处理方案(翻译)

    首先,好消息是Goole将于2020年2月份发布Chrome 80版本.本次发布将推进Google的"渐进改良Cookie"策略,打造一个更为安全和保障用户隐私的网络环境. 坏消息 ...

  3. word2vec 和 glove 模型的区别

    2019-09-09 15:36:13 问题描述:word2vec 和 glove 这两个生成 word embedding 的算法有什么区别. 问题求解: GloVe (global vectors ...

  4. VMware使用总结

    1.处理器设置释疑 比如一个8核16线程处理器 处理器数量最多设置为8,而每个处理器的内核数量*处理器个数必须小于等于16. 2.虚拟网络编辑器 NAT模式中可通过NAT设置将内部端口映射到主机端口. ...

  5. 终极指南:构建用于检测汽车损坏的Mask R-CNN模型(附Python演练)

    介绍 计算机视觉领域的应用继续令人惊叹着.从检测视频中的目标到计算人群中的人数,计算机视觉似乎没有无法克服的挑战. 这篇文章的目的是建立一个自定义Mask R-CNN模型,可以检测汽车上的损坏区域(参 ...

  6. docker 本地镜像导入导出 compose安装

    docker 本地镜像导入导出 1.Docker导入本地gz镜像 [root@rocketmq-nameserver4 dev]# cat alibaba-rocketmq-3.2.6.tar.gz ...

  7. SpringMVC里 form提交到controller404 解决方法

    把 <form action="/logon"> 改为 <form action="${pageContext.request.contextPath} ...

  8. 一文摸透从输入URL到页面渲染的过程

    一文摸透从输入URL到页面渲染的过程 从输入URL到页面渲染需要Chrome浏览器的多个进程配合,所以我们先来谈谈现阶段Chrome浏览器的多进程架构. 一.Chrome架构 目前Chrome采用的是 ...

  9. IBN-Net: 提升模型的域自适应性

    本文解读内容是IBN-Net, 笔者最初是在很多行人重识别的库中频繁遇到比如ResNet-ibn这样的模型,所以产生了阅读并研究这篇文章的兴趣,文章全称是: <Two at Once: Enha ...

  10. Codeforces Round #627 (Div. 3)

    1324A - Yet Another Tetris Problem(思维) 题意 给一个数组,每一个数组中的元素大小表示在竖直方向的方块数量,元素相邻怎竖直方向的方块也相邻,类似于俄罗斯方块当底层被 ...