#coding:utf-8
import tensorflow as tf
tf.reset_default_graph()
image = tf.random_normal([1, 112, 96, 3])
in_channels = 3
out_channels = 32
kernel_size = 5
conv_weight = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, in_channels, out_channels], stddev=0.1,
dtype=tf.float32)) print 'image shape', image.get_shape()
print 'conv weight shape', conv_weight.get_shape()
bias = tf.Variable(tf.zeros([out_channels], dtype=tf.float32))
conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='SAME')
conv = tf.nn.bias_add(conv, bias)
print 'conv output shape with SAME padded', conv.get_shape() conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='VALID')
conv = tf.nn.bias_add(conv, bias)
print 'conv output shape with VALID padded', conv.get_shape() '''
两种padding方式的不同
SAME 简而言之就是丢弃,像素不够的时候对那部分不进行卷积,输出图像的宽高计算公式如下(向上取整,进1):
HEIGHT = ceil(float(in_height)/float(strides[1]))
WIDTH = ceil(float(in_width)/float(strides[2])) VALID 简而言之就是补全,像素不够的时候补0,输出图像的宽高计算公式如下
HEIGHT = ceil(float(in_height - filter_height + 1)/float(strides[1]))
WIDTH = ceil(float(in_width - filter_width + 1)/float(strides[2]))
'''

打印结果

image shape (1, 112, 96, 3)
 conv weight shape (5, 5, 3, 32)
 conv output shape with SAME padded (1, 38, 32, 32)
 conv output shape with VALID padded (1, 36, 31, 32)

pool_size = 3
pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='SAME')
print pool.get_shape()
pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='VALID')
print pool.get_shape()

结果

(1, 18, 16, 32)
(1, 17, 15, 32)

#激活层
relu = tf.nn.relu(pool)
print relu.get_shape()
l2_regularizer = tf.contrib.layers.l2_regularizer(1.0)
def prelu(x, name = 'prelu'):
with tf.variable_scope(name):
alphas = tf.get_variable('alpha', x.get_shape()[-1], initializer=tf.constant_initializer(0.25), regularizer=l2_regularizer, dtype=
tf.float32)
pos = tf.nn.relu(x)
neg = tf.multiply(alphas, (x - abs(x)) * 0.5)
return pos + neg
prelu_out = prelu(pool)
print prelu_out.get_shape()

卷积神经网络---padding、 pool、 Activation layer的更多相关文章

  1. YJango的卷积神经网络——介绍

    原文地址:https://zhuanlan.zhihu.com/p/27642620 如果要提出一个新的神经网络结构,首先就需要引入像循环神经网络中“时间共享”这样的先验知识,降低学习所需要的训练数据 ...

  2. 卷积神经网络之LeNet

    开局一张图,内容全靠编. 上图引用自 [卷积神经网络-进化史]从LeNet到AlexNet. 目前常用的卷积神经网络 深度学习现在是百花齐放,各种网络结构层出不穷,计划梳理下各个常用的卷积神经网络结构 ...

  3. 简单的卷积神经网络(CNN)的搭建

    卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.与普通神经网络非常相 ...

  4. paper 162:卷积神经网络(CNN)解析

    卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer ...

  5. 第二次作业:卷积神经网络 part 1

    第二次作业:卷积神经网络 part 1 视频学习 数学基础 受结构限制严重,生成式模型效果往往不如判别式模型. RBM:数学上很漂亮,且有统计物理学支撑,但主流深度学习平台不支持RBM和预训练. 自编 ...

  6. 卷积神经网络学习笔记——Siamese networks(孪生神经网络)

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 在整理这些知识点之前,我 ...

  7. 卷积神经网络学习笔记——SENet

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和SE ...

  8. 深度学习基础-基于Numpy的卷积神经网络(CNN)实现

    本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN) ...

  9. 卷积神经网络CNN与深度学习常用框架的介绍与使用

    一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器 ...

随机推荐

  1. MySQL5.7忘记密码解决方案

    第一种方法 首先是网上普遍见到的 关闭服务 windows下在C:\ProgramData(隐藏文件夹)\MySQL\MySQL Server 5.7\my.ini中的[mysqld]下添加skip- ...

  2. Java JDK for Windows

    目录 JDK简介下载安装配置JAVA_HOME和Path测试禁止Java自动更新(可选操作) JDK简介 JDK是Java语言的软件开发工具包,主要用于移动设备.嵌入式设备上的java应用程序.JDK ...

  3. EE将于5月30日在英国推出首个5G网络

    英国移动运营商 EE 宣布计划于周三在英国推出 5G,该网络将于 5 月 30 日开通,第一批 5G 手机可从今天开始预订.EE 最初的 5G 网络部署将集中在六个城市(伦敦,加的夫,爱丁堡,贝尔法斯 ...

  4. Vulkan SDK 之 Instance

    上一篇 Vulkan SDK Demo 熟悉 粗略的了解了下,一个app是如何调用vulkan的api来展示一个立方体的,但是对其中的每一个api了解并不深刻,后面的系列会根据sample的tutor ...

  5. (一)IOC基础推导及理论

    环境准备:见java环境搭建,新建maven项目 1.写一个UserDao接口 public interface UserDao { public void getUser(); } 2.再写Dao的 ...

  6. 二十二、CI框架之模型别名

    一.在控制器中调用模型时,可以给模型取别名,之后调用时,调用别名就可以了 二.界面显示如下: 不忘初心,如果您认为这篇文章有价值,认同作者的付出,可以微信二维码打赏任意金额给作者(微信号:382477 ...

  7. 完美的代价(swap成回文串、贪心)

    Description 回文串,是一种特殊的字符串,它从左往右读和从右往左读是一样的.小龙龙认为回文串才是完美的. 现在给你一个串,它不一定是回文的,请你计算最少的交换次数使得该串变成一个完美的回文串 ...

  8. 干货分享|Law Essay写作高分攻略

    很多法学院的留学生对于Law Essay写作不是特别擅长,理论知识都了解,但是写出来的essay分数就是不高.同学们要从哪些方面入手呢?Law Essay写作要怎么拿高分?具体就跟小编一起来看看吧! ...

  9. CF1217A Creating a Character

    You play your favourite game yet another time. You chose the character you didn't play before. It ha ...

  10. zabbix监控日志关键字

    1 添加zabbix监控项目 A.选择类型为“”zabbix客户端(主动式)“” B.键值: xx_log.log 为日志的绝对路径 connectException 为关键字 ---需根据自己需要定 ...