Power Tower
题目大意:给出一段长为 \(n\) 的序列 \(a_1,a_2,\cdots,a_n\)
,一个模数 \(m\) .每次询问给定 \(l,r\)
求 \(a_l^{{a_{l+1}^\cdots}^{a_r}} mod\) \(m\)
思路:不断欧拉降幂即可,\(\log m\)次就可以达到1,由于套了一个快速幂,复杂度 \(O(\log ^2 n)\)。注意取模时应满足广义欧拉定理 在这里卡了好久
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=50005;
int a[N],m,l,r,n,q;
unordered_map<int,int>mp;
int phi(int x)
{
int tmp=x;
if(mp.count(x))return mp[x];
int res=x;
for(int i=2;i*i<=x;++i)
{
if(x%i==0)
{
res=res-res/i;
while(x%i==0)x/=i;
}
}
if(x>1)res=res-res/x;
return mp[tmp]=res;
}
int mod(int x,int m)
{
return x>=m?x%m+m:x;
}
int qpow(int n,int k,int p)
{
int base=n,res=1;
while(k)
{
if(k&1)res=mod(res*base,p);
base=mod(base*base,p);
k>>=1;
}
return res;
}
int f(int l,int r,int m)
{
if(l==r||m==1)return mod(a[r],m);
return qpow(a[l],f(l+1,r,phi(m)),m);
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;++i)scanf("%lld",&a[i]);
scanf("%lld",&q);
while(q--)
{
scanf("%lld%lld",&l,&r);
printf("%lld\n",f(l,r,m)%m);
}
return 0;
}
Power Tower的更多相关文章
- 【CodeForces】906 D. Power Tower 扩展欧拉定理
[题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...
- CodeForces - 906D Power Tower(欧拉降幂定理)
Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...
- Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)
题目链接 Power Tower 题意 给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$ 对m取模的值 根据这个公式 每次 ...
- Codeforces Round #454 D. Power Tower (广义欧拉降幂)
D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...
- CF906D Power Tower
扩展欧拉定理 CF906D Power Tower 洛谷交的第二个黑题 题意 给出一个序列\(w-1,w_2,\cdots,w_n\),以及\(q\)个询问 每个询问给出\(l,r\),求: \[w_ ...
- CodeForces 907F Power Tower(扩展欧拉定理)
Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...
- [Codeforces]906D Power Tower
虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数 ...
- D - Power Tower欧拉降幂公式
题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\) 题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还 ...
- Codeforces 906 D. Power Tower
http://codeforces.com/contest/906/problem/D 欧拉降幂 #include<cstdio> #include<iostream> usi ...
- [CodeForces - 906D] Power Tower——扩展欧拉定理
题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩 ...
随机推荐
- JS截取腾讯视频和去除视频广告
一:腾讯视频截取 H5视频播放除了video标签以外,还有iframe嵌套视频 项目需求是用户输入腾讯视频的html链接,如 https://v.qq.com/x/page/y0116k2vspw.h ...
- MySQL复制(一)--复制概述
MySQL复制(replication)文档集合:1.复制概述2.基于二进制日志文件位置(binlog)配置复制3.基于全局事物标识符(GTID)配置复制4.多源复制5.级联复制6.半同步复制7.延迟 ...
- Day1-Luogu-2085
题目描述 有n个函数,分别为F1,F2,...,Fn.定义Fi(x)=Ai*x^2+Bi*x+Ci (x∈N*).给定这些Ai.Bi和Ci,请求出所有函数的所有函数值中最小的m个(如有重复的要输出多个 ...
- 使用 CAS 在 Tomcat 中实现单点登录 http://www.ibm.com/developerworks/cn/opensource/os-cn-cas/
developerWorks 中国 技术主题 Open source 文档库 使用 CAS 在 Tomcat 中实现单点登录 单点登录(Single Sign On , 简称 SSO )是目前比较流行 ...
- C++服务器与java进行socket通信案例
分类: [java]2012-10-08 12:03 14539人阅读 评论(46) 收藏 举报 注:本代码版权所有!!!转载时请声明源地址:http://blog.csdn.net/nuptboyz ...
- 火狐中添加selenium IDE
在火狐中添加selenium IDE 1.下载selenium IDE,此处下载的是selenium-ide-2.5.0.xpi 2.在火狐中,打开菜单-->附加组件-->用户附加组件的工 ...
- Ethernet IP TCP UDP 协议头部格式
The Ethernet header structure is shown in the illustration below: 以太网头部14 bytes Destination Source L ...
- 第3节 sqoop:5、实现数据的控制导入
导入表数据子集 我们可以导入表的使用Sqoop导入工具,"where"子句的一个子集.它执行在各自的数据库服务器相应的SQL查询,并将结果存储在HDFS的目标目录. where子句 ...
- Tasks、 activity 及 activity stack - 人间奇迹(转)
http://www.cnblogs.com/yaozhongxiao/p/3365345.html Activity之间的跳转,或者说加载一个新的Activity,一般对于开发者来说,都不是一个 ...
- 033、Java中使用简化运算符
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...