该部分位于numpy - ref - 1.14.5中的2.8 available ufuncs

1 数学运算

1.1 元素级加法 add

加法规则:

numpy.add(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj]) = <ufunc 'add'>

x1 ,x2 - number,ndarray,Iterable 均可,实际上一般为ndarray。

out - 存储结果的位置,如果提供,其必须事具有输入广播的形状,如果无或者不提供,则返回新分配的数组;元组(可能仅作为关键字参数)的长度必须等于输出的数量。

余下参数略,不做说明,实际上记住 numpy.add(x1, x2) 即可,余下参数用的不多

示例一:一个ndarray + 数字

将数字与ndarray中的每一个元素相加

a = np.arange(1,5).reshape(2,2)
print(a)
# [[1 2]
#  [3 4]]
b = np.add(a,2)
print(b)
# [[3 4]
#  [5 6]]

示例二:两个同shape的ndarray相加

对应元素相加

a = np.arange(1,5).reshape(2,2)
print(a)
# [[1 2]
#  [3 4]]
b = np.arange(0,4).reshape(2,2)
print(b)
# [[0 1]
#  [2 3]]
c = np.add(a,b)
print(c)
# [[1 3]
#  [5 7]]

示例三:两个shape不全相等的ndarray相加

此时相当于 广播

a = np.arange(1,5).reshape(2,2)
print(a)
# [[1 2]
#  [3 4]]
b = np.arange(0,2)
print(b)
# [0 1]
c = np.add(a,b)
print(c)
# [[1 3]
#  [3 5]]

示例四:两个shape不全相等的ndarray相加

此时 与 广播 等价

a = np.arange(1,5).reshape(2,2)
print(a)
# [[1 2]
#  [3 4]]
b = np.arange(0,2).reshape(-1,1)
print(b)
# [[0]
#  [1]]
c = np.add(a,b)
print(c)
# [[1 2]
#  [4 5]]

示例五:两个shape不全相等的ndarray相加

此时相当于广播

a = np.arange(1,5).reshape(2,2)
print(a)
# [[1 2]
#  [3 4]]
b = np.arange(0,4).reshape(1,2,2)
print(b)
# [[[0 1]
#   [2 3]]]
c = np.add(a,b)
print(c)
# [[[1 3]
#   [5 7]]]

示例六:x1 x2的shape值不符合广播规则时,无法add

numpy 广播

a = np.arange(1,5).reshape(2,2)
print(a)
# [[1 2]
#  [3 4]]
b = np.arange(0,4)
print(b)
# [0 1 2 3]
c = np.add(a,b)
print(c)
# ValueError: operands could not be broadcast together with shapes (2,2) (4,) 
a = np.arange(1,7).reshape(2,3)
print(a)
# [[1 2 3]
#  [4 5 6]]
b = np.arange(0,4).reshape(2,2)
print(b)
# [[0 1]
#  [2 3]]
c = np.add(a,b)
print(c)
# ValueError: operands could not be broadcast together with shapes (2,3) (2,2) 

综上:当x1.shape != x2.shape 时,x1 x2 必须可广播到一个通用形状(可能是其中一个或另一个形状shape)they must be broadcastable to a common shape (which may be the shape of one or the other)。

1.2 元素级减法 subtract(x1, x2)

相减,该算法与加法相似,略

1.3 元素级乘法 multiply(x1,x2)

乘法,示例

# a = np.arange(1,5).reshape(2,2)
a = np.arange(1,5)
print(a)
# [1 2 3 4]
b = np.arange(0,4).reshape(-1,1)
print(b)
# [[0]
#  [1]
#  [2]
#  [3]]
c = np.multiply(a,b)
print(c)
# [[ 0  0  0  0]
#  [ 1  2  3  4]
#  [ 2  4  6  8]
#  [ 3  6  9 12]]

1.4 元素级除法 divide(x1, x2)、floor_divide(x1, x2)、floor_divide(x1, x2)

a = np.arange(1,5)
print(a) #[1 2 3 4]

b = np.divide(a,2)
print(b)
# [0.5 1.  1.5 2. ]

c = np.true_divide(a,2)
print(c)
# [0.5 1.  1.5 2. ]

d = np.floor_divide(a,2)
print(d)
# [0 1 1 2]

print(a/2)
# [0.5 1.  1.5 2. ]

print(a//2)
# [0 1 1 2]

注解:

(1)divide(x1, x2)、  true_divide、 / 是等价的,为真除

(2)floor_divide(x1, x2) 、// 是等价的,为地板除

1.5 元素级 幂指数和的对数计算 logaddexp(x1, x2)、logaddexp2(x1, x2)

logaddexp(x1, x2) 等价于 log(exp(x1) + exp(x2))

logaddexp2(x1, x2) 等价于 log2(2**x1 + 2**x2)

该函数在统计学方面是非常有用的,其计算的时间概率非常小,甚至超过了正常浮点数的范围。

a = np.arange(0,3)
print(a)
# [0 1 2]
b = np.arange(1,4)
print(b)
# [1 2 3]
c = np.logaddexp(a,b)
print(c)
# [1.31326169 2.31326169 3.31326169]

1.6 元素级 指数函数exp(x)、exp2(x)、expm1(x)

exp(x) - 计算所有元素的对数(以自然对数 e - 2.718281为底)

exp2(x) - 计算所有元素的对数(以2为底)

expm(x) - 计算数组中所有元素的 exp(x) - 1

a = np.arange(0,3)
print(a)
# [0 1 2]

b = np.exp(a)
print(b)
# [1.         2.71828183 7.3890561 ]

c = np.expm1(a)
print(c)
# [0.         1.71828183 6.3890561 ]

d = np.exp2(a)
print(d)
# [1. 2. 4.]

1.7 元素级 自然对数 log(x)、log2(x)、log10(x)、log1p(x)

log(x) - 自然对数,以自然数e为底的x的对数

log2(x) - 2为底的对数

log10(x) - 10为底的对数

log1p(x) - 计算 log(1 + x).

a = np.arange(0,3)
print(a)
# [0 1 2]

b = np.exp(a)
print(b)
# [1.         2.71828183 7.3890561 ]

c = np.log(b)
print(c)
# [0. 1. 2.]

d = np.log1p(b)
print(d)
# [0.69314718 1.31326169 2.12692801]
 

1.8 相反数negative(x)

取x的相反数,类似函数 y = -x

a = np.array([0,-1,2,-3)
b = np.negative(a)
print(b)
# [ 0 1 -2 3]

1.9 positive(x)

返回 y (= +x) ,略

1.10 元素级 幂 power(x1, x2)

类似函数 y = x1 ** x2 ,

第一个array elements x1 raised to powers 从第二个 array 中

a = range(6)
print(a)
# range(0, 6)

b = np.power(a,2)
print(b)
# [ 0  1  4  9 16 25]

示例二

a = range(6)
print(a)
# range(0, 6)

b = [6.0, 5.0, 4.0, 3.0, 2.0, 1.0]
c = np.power(a,b)
print(c)
# [ 0.  1. 16. 27. 16.  5.]

示例三(the effect of broadcasting 广播的作用)

a = range(6)
print(a)
# range(0, 6)

b = np.array([[6, 5, 4, 3, 2, 1], [6, 5, 4, 3, 2, 1]])
c = np.power(a,b)
print(c)
# [[ 0  1 16 27 16  5]
#  [ 0  1 16 27 16  5]]

1.11 余数remainder(x1, x2)

示例一

a = np.array([1,2,3,4])
c = np.remainder(a,2)
print(c)
# [1 0 1 0]

示例二

a = np.remainder([4,7],[2,3])
print(a) #[0 1]

对于余数,其实 remainder() 余数计算是 floor_divide() 的地板除计算的 complementary。

示例三

a = np.remainder(
    [4, 7, -7, 7, -7],
    [2, 3, 3, -3, -3]
#   [0  1  2  -2  -1] a的值
)
print(a)

1.12 模运算mod(x1, x2)、fmod(x1, x2)、divmod(x1,x2)

mod(x1, x2) - mod函数与remainder函数的功能完全一致

fmod(x1, x2) - fmod函数所得余数值得正负由被除数决定,与除数得正负无关,此与mod、remainder、%处理负数的方式不同。

a = np.mod(
    [4, 7, -7, 7, -7],# 被除数
    [2, 3, 3, -3, -3] # 除数
#   [0  1  2  -2  -1] mod 余数正负由被除数 除数一起决定
)
print(a)

b = np.fmod(
    [4, 7, -7, 7, -7], # 被除数
    [2, 3, 3, -3, -3]  # 除数
#   [0  1  -1  1  -1]  fmod余数正负由被除数决定,与除数正负无关
)
print(b)

divmod(x1,x2) - 函数所得余数正负与 mod 函数相同,其会返回一个包含 floor_divide 和 mod 的元组,

a = np.divmod(
    [4, 7, -7, 7, -7],# 被除数
    [2, 3, 3, -3, -3] # 除数
#   (array([ 2,  2, -3, -3,  2], dtype=int32),该结果值与floor_divide类似
#    array([ 0,  1,  2, -2, -1], dtype=int32)) 该结果值与mod类似
)
print(a)

1.13 绝对值 absolute(x)、fabs(x)

absolute(x) - 绝对值(返回值为整型)

fabs(x) - 绝对值(返回值浮点类型)

a = np.array([0,-1,2,-3,4])
b = np.absolute(a)
print(b) #[0 1 2 3 4]

c = np.fabs(a)
print(c) # [0. 1. 2. 3. 4.]

1.14 四舍五入 rint(x)

将数组中的元素舍入到最接近的整数。

a = np.array([1.4, 1.5, 1.6, 2.4, 2.5, 2.6])
c = np.rint(a)
print(c)   # [ 1.  2.   2.   2.   2.   3.]

四舍五入:四舍六入五留双

1.15 数学标志符号 sign(x)

返回一个数字符号的元素指示

对于实数而言

x < 0    return   -1

x == 0  return    1

 x > 0    return    1
 
对于虚数 complex 而言
x.real  !=  0    return sign( x.real ) + 0 j
x.real == 0     return sign( x.imag ) + 0 j
注:real为实部,imag为虚部
a = np.array([-5,5])
b = np.sign(a)
print(b)#[-1  1]

c = np.sign(5-2j)
print(c)#(1+0j)

d = np.sign(-2j)
print(d)#(-1+0j)

1.16 分段函数 heaviside(x1, x2)

                    0   if x1 < 0
heaviside(x1, x2) = x2  if x1 == 0
                    1   if x1 > 0 

示例:

a = np.heaviside([-1.5, 0, 2.0], 0.5)
print(a)# [0.  0.5 1. ]

a = np.heaviside([-1.5, 0, 2.0], 1)
print(a) # [0. 1. 1.]

1.17 复共轭 conj(x)

复数的复共轭是通过改变其虚部的符号来获得的。

a = np.conjugate(2+2j)
print(a)# (2-2j)

1.18 算术平方根sqrt(x)、立方根 cbrt(x)

a = np.arange(0,4)
print(a)
# [0 1 2 3]

b = np.sqrt(a)
print(b)
# [0. 1. 1.41421356 1.73205081]

c = np.cbrt([0,1,8,27])
print(c)
# [0. 1. 2. 3.]

1.19 平方 square(x)

a = np.square([0,1,2,3])
print(a)
# [0 1 4 9]

1.20 倒数 reciprocal(x)

a = np.reciprocal([1,2,3])
print(a)
# [1 0 0]

b = np.reciprocal([1.,2.,3.])
print(b)
# [1.  0.5   0.33333333]

备注,倒数与原数的数据类型一致。

numpy ndarray可用的常规函数的更多相关文章

  1. javascript函数一共可分为五类: ·常规函数 ·数组函数 ·日期函数 ·数学函数 ·字符串函数

    javascript函数一共可分为五类:    ·常规函数    ·数组函数    ·日期函数    ·数学函数    ·字符串函数    1.常规函数    javascript常规函数包括以下9个 ...

  2. NumPy Ndarray 对象

    NumPy Ndarray 对象 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引. ndarray 对象是用于存放 ...

  3. numpy.random.random & numpy.ndarray.astype & numpy.arange

    今天看到这样一句代码: xb = np.random.random((nb, d)).astype('float32') #创建一个二维随机数矩阵(nb行d列) xb[:, 0] += np.aran ...

  4. Python中Numpy ndarray的使用

    本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数 ...

  5. Numpy Ndarray对象1

    标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三 ...

  6. python:<class 'numpy.ndarray'>的学习

    在学习opencv-python的时候,给出图片地址再调用cv2.imread("地址"),发现出创建的是numpy类型的ndarray对象,用来存放多维数组的对象 # 导入cv2 ...

  7. 初探numpy——广播和数组操作函数

    numpy广播(Broadcast) 若数组a,b形状相同,即a.shape==b.shape,那么a+b,a*b的结果就是对应数位的运算 import numpy as np a=np.array( ...

  8. Lesson2——NumPy Ndarray 对象

    NumPy 教程目录 NumPy Ndarray 对象 NumPy 最重要的一个特点是其 $N$ 维数组对象 ndarray,它是一系列同类型数据的集合,以 $0$ 下标为开始进行集合中元素的索引. ...

  9. JavaScrip常规函数

    JavaScrip常规函数包括以下8个:alert函数:显示一个警告对话框,包括一个"OK"按钮.confirm函数:显示一个确认对话框,包括一个"OK".&q ...

随机推荐

  1. Objective-C 简介

    很少有人会想到 Objective-C 历史悠久,并且它实际上影响了很多其他的编程技术.比如, Java 编程语言和 Objective-C 就有很多共同点.原因就是在 Objective-C 的早期 ...

  2. RocketMQ【未完成】

    RocketMQ 是一款快速地.可靠地.分布式.容易使用的消息中间件,由 alibaba 开发,其前身是 metaq,metaq 的第一个版本是可以看成是linkedin的kafka(scala)的j ...

  3. .NET Framework System.Array.Sort 数组类,加深对 IComparer、IComparable 以及泛型委托、匿名方法、Lambda 表达式的理解

    本文内容 自定义类 Array.Sort 参考资料 System.Array.Sort 有很多对集合的操作,比如排序,查找,克隆等等,你可以利用这个类加深对 IComparer.IComparable ...

  4. Android 原生 Android ActionBar Tab (滑动)导航

    本文内容 环境 项目结构 演示一:ActionBar Tab 导航 演示二:ActionBar Tab 带滑动导航 本文演示 Tab 导航.第一个演示,是基本的 Tab 导航,第二个是带滑动的 Tab ...

  5. redis-dev

    redis install by centos   -------------------------------------------------------------------------- ...

  6. SpeechLib 应用

    //引用组件:Interop.SpeechLib.dll //导入空间:SpeechLib //引用组件:Interop.SpeechLib.dll//导入空间:SpeechLib //1.SpVoi ...

  7. 查看一个目录是否已经mount --bind

    执行 mountpoint -q /test/mount echo $? 如果是0表示已经mount mountpoint -q /test/mount || mount -o bind /some/ ...

  8. 带你走进EJB--将EJB发布为Webservice(2)

    在企业级的应用程序中经常都要把用不同语言写成的.在不同平台上运行的各种程序集成起来,而这种集成将花费很大的开发力量. 简单的一个例子:应用程序经常需要从运行在A主机上的程序中获取数据:或者把数据发送到 ...

  9. C# FTP常规方法

    using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...

  10. angularjs中的坑

    ng-show 等ng的指令中不需要使用{{parameter}}来取值,回无效