Intro to Python for Data Science Learning 2 - List
List
from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-lists?ex=2
-----------------1-------------------------------------
- Create a list
As opposed to int
, bool
etc., a list is a compound data type; you can group values together:
a = "is"
b = "nice"
my_list = ["my", "list", a, b]
--------------2----------------------------------------
Create list with different types
A list can contain any Python type. Although it's not really common, a list can also contain a mix of Python types including strings, floats, booleans, etc.
# area variables (in square meters)
hall = 11.25
kit = 18.0
liv = 20.0
bed = 10.75
bath = 9.50
# Adapt list areas
areas = ["hallway",hall, "kitchen",kit, "living room", liv, "bedroom",bed, "bathroom", bath]
# Print areas
print(areas)
---------------3-------------------------------------
- Select the valid list
my_list = [el1, el2, el3]
both of them are correct:A. [1, 3, 4, 2]
B. [[1, 2, 3], [4, 5, 7]]
C. [1 + 2, "a" * 5, 3]
Subsetting lists
Subset and conquer
x = ["a", "b", "c", "d"]
x[1]
x[-3] # same result!
Subset and calculate
x = ["a", "b", "c", "d"]
print(x[1] + x[3])
Slicing and dicing
x = ["a", "b", "c", "d"]
x[1:3]
The elements with index 1 and 2 are included, while the element with index 3 is not.
Slicing and dicing (2)
x = ["a", "b", "c", "d"]
x[:2]
x[2:]
x[:]
Subsetting lists of lists
x = [["a", "b", "c"],
["d", "e", "f"],
["g", "h", "i"]]
x[2][0]
x[2][:2]
List Manipulation
--------------------1-----------------------
Replace list elements
x = ["a", "b", "c", "d"]
x[1] = "r"
x[2:] = ["s", "t"]
-------------------2------------
Extend a list
x = ["a", "b", "c", "d"]
y = x + ["e", "f"]
-------------------3------------
Delete list elements
x = ["a", "b", "c", "d"]
Pay attention here: as soon as you remove an element from a list, the indexes of the elements that come after the deleted element all change!
del(x[1])
The;
sign is used to place commands on the same line. The following two code chunks are equivalent:
# Same line
command1; command2
# Separate lines
command1
command2
So if delete two items, pay more attention here. better to use like this del(areas[-4:-2]), instead of "del(areas[10]); del(areas[11])","del(areas[10:11])" "del(areas[-3]); del(areas[-4])",
----------------------------------------------4--------------------------------------------------------------
Inner workings of lists
if use "areas_copy = areas", then they are the same thing, when value in one of them changed, both of them will be changed.
if use "areas_copy = areas[:]", then they are not the same thing, when value in one of them changed, the other one will Not be changed.
Intro to Python for Data Science Learning 2 - List的更多相关文章
- Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics
NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...
- Intro to Python for Data Science Learning 7 - 2D NumPy Arrays
2D NumPy Arrays from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4- ...
- Intro to Python for Data Science Learning 5 - Packages
Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...
- Intro to Python for Data Science Learning 6 - NumPy
NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...
- Intro to Python for Data Science Learning 4 - Methods
Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...
- Intro to Python for Data Science Learning 3 - functions
Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...
- Intermediate Python for Data Science learning 2 - Histograms
Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...
- Intermediate Python for Data Science learning 1 - Basic plots with matplotlib
Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...
- Intermediate Python for Data Science learning 3 - Customization
Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...
随机推荐
- Apache 的mod_auth_cas模块的介绍和使用
apache的mod_auth_cas模块是一个集成到apache中的cas客户端,一般是配合Apache的反向代理来使用,对某个url的请求先经过apache,apache会判断是否经过cas认证, ...
- Java虚拟机九 java.lang.String在虚拟机中的实现
在Java中,Java的设计者对String对象进行了大量的优化,主要有三个特点: 1.不变性: 不变性是指String对象一旦生成,则不能再对它进行改变.String的这个特点可以泛化成不变(imm ...
- Centos6.5 虚拟机Mongodb创建副本集
简单副本集的搭建 官方demo的最小化的副本集为Three Member Sets,一个primary和两个secondary.我们先就搭建一个这样的测试环境. 首先建立三个数据目录和日志目录: cd ...
- 转sklearn保存模型
训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...
- CAT偶现NPE的问题
1.背景 我们公司的调用链系统是基于大众点评的CAT客户端改造的,服务端完全有自己设计开发的.在是用CAT客户端收集dubbo调用信息的时候,我们发现了一个CAT偶现NPE的bug,该bug隐藏的很深 ...
- CSS在网页中应用的方式_嵌入式
内联式样式表:直接写在现有的标记中,比如: 复制代码 代码如下: <p style="font-size:24px;">www.phpstudy.net</p&g ...
- FTP的两种主动模式和被动模式
参考:https://blog.csdn.net/xqhrs232/article/details/54633006 https://blog.csdn.net/yuanhangq220/articl ...
- TOP100summit 2017:【案例分享】魅族持续交付平台建设实践
本篇文章内容来自第10期魅族开放日魅族运维架构师林钟洪的现场分享.编辑:Cynthia 一.自动化建设历程1.1 魅族互联网发展的时间线 2003-2008年被称之为“互联网1.0时代”.2003年, ...
- Solr学习笔记之4、Solr配置文件简介
Solr学习笔记之4.Solr配置文件简介 摘自<Solr in Action>. 1. solr.xml – Defines one or more cores per Solr ser ...
- GCD之各种派发
dispatch_apply的用法 并行模拟for循环,将指定的代码循环10次,一般会把这些代码附加到一个queue上,然后在 dispatch_apply里并行 dispatch_queue_t q ...