Intro to Python for Data Science Learning 2 - List
List
from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-lists?ex=2
-----------------1-------------------------------------
- Create a list
As opposed to int
, bool
etc., a list is a compound data type; you can group values together:
a = "is"
b = "nice"
my_list = ["my", "list", a, b]
--------------2----------------------------------------
Create list with different types
A list can contain any Python type. Although it's not really common, a list can also contain a mix of Python types including strings, floats, booleans, etc.
# area variables (in square meters)
hall = 11.25
kit = 18.0
liv = 20.0
bed = 10.75
bath = 9.50
# Adapt list areas
areas = ["hallway",hall, "kitchen",kit, "living room", liv, "bedroom",bed, "bathroom", bath]
# Print areas
print(areas)
---------------3-------------------------------------
- Select the valid list
my_list = [el1, el2, el3]
both of them are correct:A. [1, 3, 4, 2]
B. [[1, 2, 3], [4, 5, 7]]
C. [1 + 2, "a" * 5, 3]
Subsetting lists
Subset and conquer
x = ["a", "b", "c", "d"]
x[1]
x[-3] # same result!
Subset and calculate
x = ["a", "b", "c", "d"]
print(x[1] + x[3])
Slicing and dicing
x = ["a", "b", "c", "d"]
x[1:3]
The elements with index 1 and 2 are included, while the element with index 3 is not.
Slicing and dicing (2)
x = ["a", "b", "c", "d"]
x[:2]
x[2:]
x[:]
Subsetting lists of lists
x = [["a", "b", "c"],
["d", "e", "f"],
["g", "h", "i"]]
x[2][0]
x[2][:2]
List Manipulation
--------------------1-----------------------
Replace list elements
x = ["a", "b", "c", "d"]
x[1] = "r"
x[2:] = ["s", "t"]
-------------------2------------
Extend a list
x = ["a", "b", "c", "d"]
y = x + ["e", "f"]
-------------------3------------
Delete list elements
x = ["a", "b", "c", "d"]
Pay attention here: as soon as you remove an element from a list, the indexes of the elements that come after the deleted element all change!
del(x[1])
The;
sign is used to place commands on the same line. The following two code chunks are equivalent:
# Same line
command1; command2
# Separate lines
command1
command2
So if delete two items, pay more attention here. better to use like this del(areas[-4:-2]), instead of "del(areas[10]); del(areas[11])","del(areas[10:11])" "del(areas[-3]); del(areas[-4])",
----------------------------------------------4--------------------------------------------------------------
Inner workings of lists
if use "areas_copy = areas", then they are the same thing, when value in one of them changed, both of them will be changed.
if use "areas_copy = areas[:]", then they are not the same thing, when value in one of them changed, the other one will Not be changed.
Intro to Python for Data Science Learning 2 - List的更多相关文章
- Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics
NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...
- Intro to Python for Data Science Learning 7 - 2D NumPy Arrays
2D NumPy Arrays from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4- ...
- Intro to Python for Data Science Learning 5 - Packages
Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...
- Intro to Python for Data Science Learning 6 - NumPy
NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...
- Intro to Python for Data Science Learning 4 - Methods
Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...
- Intro to Python for Data Science Learning 3 - functions
Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...
- Intermediate Python for Data Science learning 2 - Histograms
Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...
- Intermediate Python for Data Science learning 1 - Basic plots with matplotlib
Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...
- Intermediate Python for Data Science learning 3 - Customization
Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...
随机推荐
- numpy中的reshape中参数为-1
上篇文章中的reshape(-1,2),有的时候不明白为什么会有参数-1,可以通过查找文档中的reshape()去理解这个问题 根据Numpy文档(https://docs.scipy.org/doc ...
- php curl常见错误:SSL错误、bool(false)
症状:php curl调用https出错 排查方法:在命令行中使用curl调用试试. 原因:服务器所在机房无法验证SSL证书. 解决办法:跳过SSL证书检查. curl_setopt($ch, CUR ...
- zabbix触发器表达式详解
Zabbix触发器的语法如下: {<server>:<key>.<function>(<parameter>)}<operator>< ...
- 使用Pangolon在同一副图中,画出两个轨迹,比较误差
使用 code/ground-truth.txt 和 code/estimate.txt 两条轨迹.请你根据上面公式,实现 RMSE的计算代码,给出最后的 RMSE 结果.作为验算,参考答案为:2.2 ...
- ZOJ 4029 - Now Loading!!! - [前缀和+二分]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4029 Time Limit: 1 Second Memory L ...
- HDU 6278 - Just h-index - [莫队算法+树状数组+二分][2018JSCPC江苏省赛C题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6278 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...
- POJ 2676 - Sudoku - [蓝桥杯 数独][DFS]
题目链接:http://poj.org/problem?id=2676 Time Limit: 2000MS Memory Limit: 65536K Description Sudoku is a ...
- CodeForces - 768C Jon Snow and his Favourite Number 桶排
https://vjudge.net/problem/CodeForces-768C 题意:n个数,k次操作,x.每次操作先排序,再让奇数位置上的数据a[i]:=a[i] XOR x; k< ...
- 使用nginx服务器如果遇到timeou情况时可以如下设置参数,使用fastcgi: fastcgi_connect_timeout 75; 链接 fastcgi_read_timeout 600; 读取 fastcgi_send_timeout 600; 发请求
使用nginx服务器如果遇到timeou情况时可以如下设置参数,使用fastcgi: fastcgi_connect_timeout 75; 链接 fastcgi_read_timeout 600; ...
- h5地理位置API
h5地理位置API 地理API允许javascript程序向浏览器询问用户的真实地理位置,支持地理位置API的浏览器在访问前总是会询问用户是否允许. 获取用户地理的途径有: 1.ip地 ...