package com.softeem.jbs.lesson4;

import java.util.Random;

/**

 * 排序测试类

 *

 * 排序算法的分类如下:

 * 1.插入排序(直接插入排序、折半插入排序、希尔排序);

 * 2.交换排序(冒泡泡排序、快速排序);

 * 3.选择排序(直接选择排序、堆排序);

 * 4.归并排序;

 * 5.基数排序。

 *

 * 关于排序方法的选择:

 * (1)若n较小(如n≤50),可采用直接插入或直接选择排序。

 *  当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。

 * (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;

 * (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。

 *

 */

public class SortTest {

       /**

        * 初始化测试数组的方法

        * @return 一个初始化好的数组

        */

       public int[] createArray() {

              Random random = new Random();

              int[] array = new int[];

              for (int i = ; i < ; i++) {

                     array[i] = random.nextInt() - random.nextInt();//生成两个随机数相减,保证生成的数中有负数

              }

              System.out.println("==========原始序列==========");

              printArray(array);

              return array;

       }

       /**

        * 打印数组中的元素到控制台

        * @param source

        */

       public void printArray(int[] data) {

              for (int i : data) {

                     System.out.print(i + " ");

              }

              System.out.println();

       }

       /**

        * 交换数组中指定的两元素的位置

        * @param data

        * @param x

        * @param y

        */

       private void swap(int[] data, int x, int y) {

              int temp = data[x];

              data[x] = data[y];

              data[y] = temp;

       }

       /**

        * 冒泡排序----交换排序的一种

        * 方法:相邻两元素进行比较,如有需要则进行交换,每完成一次循环就将最大元素排在最后(如从小到大排序),下一次循环是将其他的数进行类似操作。

        * 性能:比较次数O(n^2),n^2/2;交换次数O(n^2),n^2/4

        *

        * @param data 要排序的数组

        * @param sortType 排序类型

        * @return

        */

       public void bubbleSort(int[] data, String sortType) {

              if (sortType.equals("asc")) { //正排序,从小排到大

                     //比较的轮数

                     for (int i = ; i < data.length; i++) {

                            //将相邻两个数进行比较,较大的数往后冒泡

                            for (int j = ; j < data.length - i; j++) {

                                   if (data[j] > data[j + ]) {

                                          //交换相邻两个数

                                          swap(data, j, j + );

                                   }

                            }

                     }

              } else if (sortType.equals("desc")) { //倒排序,从大排到小

                     //比较的轮数

                     for (int i = ; i < data.length; i++) {

                            //将相邻两个数进行比较,较大的数往后冒泡

                            for (int j = ; j < data.length - i; j++) {

                                   if (data[j] < data[j + ]) {

                                          //交换相邻两个数

                                          swap(data, j, j + );

                                   }

                            }

                     }

              } else {

                     System.out.println("您输入的排序类型错误!");

              }

              printArray(data);//输出冒泡排序后的数组值

       }

       /**

        * 直接选择排序法----选择排序的一种

        * 方法:每一趟从待排序的数据元素中选出最小(或最大)的一个元素, 顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

        * 性能:比较次数O(n^2),n^2/2

        *       交换次数O(n),n

        *       交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CUP时间多,所以选择排序比冒泡排序快。

        *       但是N比较大时,比较所需的CPU时间占主要地位,所以这时的性能和冒泡排序差不太多,但毫无疑问肯定要快些。

        *

        * @param data 要排序的数组

        * @param sortType 排序类型

        * @return

        */

       public void selectSort(int[] data, String sortType) {

              if (sortType.equals("asc")) { //正排序,从小排到大

                     int index;

                     for (int i = ; i < data.length; i++) {

                            index = ;

                            for (int j = ; j <= data.length - i; j++) {

                                   if (data[j] > data[index]) {

                                          index = j;

                                   }

                            }

                            //交换在位置data.length-i和index(最大值)两个数

                            swap(data, data.length - i, index);

                     }

              } else if (sortType.equals("desc")) { //倒排序,从大排到小

                     int index;

                     for (int i = ; i < data.length; i++) {

                            index = ;

                            for (int j = ; j <= data.length - i; j++) {

                                   if (data[j] < data[index]) {

                                          index = j;

                                   }

                            }

                            //交换在位置data.length-i和index(最大值)两个数

                            swap(data, data.length - i, index);

                     }

              } else {

                     System.out.println("您输入的排序类型错误!");

              }

              printArray(data);//输出直接选择排序后的数组值

       }

       /**

        * 插入排序

        * 方法:将一个记录插入到已排好序的有序表(有可能是空表)中,从而得到一个新的记录数增1的有序表。

        * 性能:比较次数O(n^2),n^2/4

        *       复制次数O(n),n^2/4

        *       比较次数是前两者的一般,而复制所需的CPU时间较交换少,所以性能上比冒泡排序提高一倍多,而比选择排序也要快。

        *

        * @param data 要排序的数组

        * @param sortType 排序类型

        */

       public void insertSort(int[] data, String sortType) {

              if (sortType.equals("asc")) { //正排序,从小排到大

                     //比较的轮数

                     for (int i = ; i < data.length; i++) {

                            //保证前i+1个数排好序

                            for (int j = ; j < i; j++) {

                                   if (data[j] > data[i]) {

                                          //交换在位置j和i两个数

                                          swap(data, i, j);

                                   }

                            }

                     }

              } else if (sortType.equals("desc")) { //倒排序,从大排到小

                     //比较的轮数

                     for (int i = ; i < data.length; i++) {

                            //保证前i+1个数排好序

                            for (int j = ; j < i; j++) {

                                   if (data[j] < data[i]) {

                                          //交换在位置j和i两个数

                                          swap(data, i, j);

                                   }

                            }

                     }

              } else {

                     System.out.println("您输入的排序类型错误!");

              }

              printArray(data);//输出插入排序后的数组值

       }

       /**

        * 反转数组的方法

        * @param data 源数组

        */

       public void reverse(int[] data) {

              int length = data.length;

              int temp = ;//临时变量

              for (int i = ; i < length / ; i++) {

                     temp = data[i];

                     data[i] = data[length -  - i];

                     data[length -  - i] = temp;

              }

              printArray(data);//输出到转后数组的值

       }

       /**

        * 快速排序

        * 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。

        * 步骤为:

        * 1. 从数列中挑出一个元素,称为 "基准"(pivot),

        * 2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。

        * 3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

        * 递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

        * @param data 待排序的数组

        * @param low

        * @param high

        * @see SortTest#qsort(int[], int, int)

        * @see SortTest#qsort_desc(int[], int, int)

        */

       public void quickSort(int[] data, String sortType) {

              if (sortType.equals("asc")) { //正排序,从小排到大

                     qsort_asc(data, , data.length - );

              } else if (sortType.equals("desc")) { //倒排序,从大排到小

                     qsort_desc(data, , data.length - );

              } else {

                     System.out.println("您输入的排序类型错误!");

              }

       }

       /**

        * 快速排序的具体实现,排正序

        * @param data

        * @param low

        * @param high

        */

       private void qsort_asc(int data[], int low, int high) {

              int i, j, x;

              if (low < high) { //这个条件用来结束递归

                     i = low;

                     j = high;

                     x = data[i];

                     while (i < j) {

                            while (i < j && data[j] > x) {

                                   j--; //从右向左找第一个小于x的数

                            }

                            if (i < j) {

                                   data[i] = data[j];

                                   i++;

                            }

                            while (i < j && data[i] < x) {

                                   i++; //从左向右找第一个大于x的数

                            }

                            if (i < j) {

                                   data[j] = data[i];

                                   j--;

                            }

                     }

                     data[i] = x;

                     qsort_asc(data, low, i - );

                     qsort_asc(data, i + , high);

              }

       }

       /**

        * 快速排序的具体实现,排倒序

        * @param data

        * @param low

        * @param high

        */

       private void qsort_desc(int data[], int low, int high) {

              int i, j, x;

              if (low < high) { //这个条件用来结束递归

                     i = low;

                     j = high;

                     x = data[i];

                     while (i < j) {

                            while (i < j && data[j] < x) {

                                   j--; //从右向左找第一个小于x的数

                            }

                            if (i < j) {

                                   data[i] = data[j];

                                   i++;

                            }

                            while (i < j && data[i] > x) {

                                   i++; //从左向右找第一个大于x的数

                            }

                            if (i < j) {

                                   data[j] = data[i];

                                   j--;

                            }

                     }

                     data[i] = x;

                     qsort_desc(data, low, i - );

                     qsort_desc(data, i + , high);

              }

       }

       /**

        *二分查找特定整数在整型数组中的位置(递归)

        *查找线性表必须是有序列表

        *@paramdataset

        *@paramdata

        *@parambeginIndex

        *@paramendIndex

        *@returnindex

        */

       public int binarySearch(int[] dataset, int data, int beginIndex,

                     int endIndex) {

              int midIndex = (beginIndex + endIndex) >>> ; //相当于mid = (low + high) / 2,但是效率会高些

              if (data < dataset[beginIndex] || data > dataset[endIndex]

                            || beginIndex > endIndex)

                     return -;

              if (data < dataset[midIndex]) {

                     return binarySearch(dataset, data, beginIndex, midIndex - );

              } else if (data > dataset[midIndex]) {

                     return binarySearch(dataset, data, midIndex + , endIndex);

              } else {

                     return midIndex;

              }

       }

       /**

        *二分查找特定整数在整型数组中的位置(非递归)

        *查找线性表必须是有序列表

        *@paramdataset

        *@paramdata

        *@returnindex

        */

       public int binarySearch(int[] dataset, int data) {

              int beginIndex = ;

              int endIndex = dataset.length - ;

              int midIndex = -;

              if (data < dataset[beginIndex] || data > dataset[endIndex]

                            || beginIndex > endIndex)

                     return -;

              while (beginIndex <= endIndex) {

                     midIndex = (beginIndex + endIndex) >>> ; //相当于midIndex = (beginIndex + endIndex) / 2,但是效率会高些

                     if (data < dataset[midIndex]) {

                            endIndex = midIndex - ;

                     } else if (data > dataset[midIndex]) {

                            beginIndex = midIndex + ;

                     } else {

                            return midIndex;

                     }

              }

              return -;

       }

       public static void main(String[] args) {

              SortTest sortTest = new SortTest();

              int[] array = sortTest.createArray();

              System.out.println("==========冒泡排序后(正序)==========");

              sortTest.bubbleSort(array, "asc");

              System.out.println("==========冒泡排序后(倒序)==========");

              sortTest.bubbleSort(array, "desc");

              array = sortTest.createArray();

              System.out.println("==========倒转数组后==========");

              sortTest.reverse(array);

              array = sortTest.createArray();

              System.out.println("==========选择排序后(正序)==========");

              sortTest.selectSort(array, "asc");

              System.out.println("==========选择排序后(倒序)==========");

              sortTest.selectSort(array, "desc");

              array = sortTest.createArray();

              System.out.println("==========插入排序后(正序)==========");

              sortTest.insertSort(array, "asc");

              System.out.println("==========插入排序后(倒序)==========");

              sortTest.insertSort(array, "desc");

              array = sortTest.createArray();

              System.out.println("==========快速排序后(正序)==========");

              sortTest.quickSort(array, "asc");

              sortTest.printArray(array);

              System.out.println("==========快速排序后(倒序)==========");

              sortTest.quickSort(array, "desc");

              sortTest.printArray(array);

              System.out.println("==========数组二分查找==========");

              System.out.println("您要找的数在第" + sortTest.binarySearch(array, )

                            + "个位子。(下标从0计算)");

       }

}

转载地址:http://blog.csdn.net/lenotang/archive/2008/11/29/3411346.aspx

JAVA排序总结的更多相关文章

  1. 常用Java排序算法

    常用Java排序算法 冒泡排序 .选择排序.快速排序 package com.javaee.corejava; public class DataSort { public DataSort() { ...

  2. java排序集锦

    java实现排序的一些方法,来自:http://www.javaeye.com/topic/548520 package sort; import java.util.Random; /** * 排序 ...

  3. Java排序算法之直接选择排序

    Java排序算法之直接选择排序 基本过程:假设一序列为R[0]~R[n-1],第一次用R[0]和R[1]~R[n-1]相比较,若小于R[0],则交换至R[0]位置上.第二次从R[1]~R[n-1]中选 ...

  4. (转)JAVA排序汇总

    JAVA排序汇总 package com.softeem.jbs.lesson4; import java.util.Random; /** * 排序测试类 * * 排序算法的分类如下: * 1.插入 ...

  5. java排序算法(一):概述

    java排序算法(一)概述 排序是程序开发中一种非常常见的操作,对一组任意的数据元素(活记录)经过排序操作后,就可以把它们变成一组按关键字排序的一组有序序列 对一个排序的算法来说,一般从下面三个方面来 ...

  6. java排序算法(十):桶式排序

    java排序算法(十):桶式排序 桶式排序不再是一种基于比较的排序方法,它是一种比较巧妙的排序方式,但这种排序方式需要待排序的序列满足以下两个特征: 待排序列所有的值处于一个可枚举的范围之类: 待排序 ...

  7. java排序算法(九):归并排序

    java排序算法(九):归并排序

  8. java排序算法(八):希尔排序(shell排序)

    java排序算法(八):希尔排序(shell排序) 希尔排序(缩小增量法)属于插入类排序,由shell提出,希尔排序对直接插入排序进行了简单的改进,它通过加大插入排序中元素之间的间隔,并在这些有间隔的 ...

  9. java排序算法(七):折半插入排序

    java排序算法(七):折半插入排序 折半插入排序法又称为二分插入排序法,是直接插入排序法的改良版本,也需要执行i-1趟插入.不同之处在于第i趟插入.先找出第i+1个元素应该插入的位置.假设前i个数据 ...

  10. java排序算法(六):直接插入排序

    java排序算法(六):直接插入排序 直接插入排序的基本操作就是将待的数据元素按其关键字的大小插入到前面的有序序列中 直接插入排序时间效率并不高,如果在最坏的情况下,所有元素的比较次数的总和为(0+1 ...

随机推荐

  1. linux系统部署Java程序获取ip时报Caused by: java.net.UnknownHostException: XXXXXXXXXX: XXXXXXXXXX: Name or service not known

    问题一: Caused by: java.net.UnknownHostException: XXXXXXXXXX: XXXXXXXXXX: Name or service not known vi ...

  2. 疑犯追踪第一季/全集Person Of Interest迅雷下载

    本季Person of Interest Season 1 第一季(2011)看点:如今,<疑犯追踪>正在纽约热拍,在11月1日的片场,刚刚完成了一场爆炸的戏.另外,<探索者传说第一 ...

  3. 简析Window、Activity、DecorView以及ViewRoot之间的错综关系

    一.职能简介 Activity Activity并不负责视图控制,它只是控制生命周期和处理事件.真正控制视图的是Window.一个Activity包含了一个Window,Window才是真正代表一个窗 ...

  4. 用SparseArray代替HashMap

    SparseArray是android提供的一个工具类,它可以用来替代hashmap进行对象的存储,其内部实现了一个矩阵压缩算法,很适合存储稀疏矩阵的. PS:support包中还提供了兼容的类Spa ...

  5. [Hook] 免root,自己进程内,binder hook (ClipboardManager)

    cp from : http://weishu.me/2016/02/16/understand-plugin-framework-binder-hook/ Android系统通过Binder机制给应 ...

  6. [Link]Gearman分布式任务处理系统

    http://blog.csdn.net/jiao_fuyou/article/category/1745977 http://www.cnblogs.com/cocowool/archive/201 ...

  7. 从头认识Spring-2.1 自己主动装配(2)-byType(2)

    为了解决配置文件中面出现多个同类型的Bean而byType无法匹配的问题.引入了primary和autowire-candidate属性. 1.primary 因为全部bean默认的primary都是 ...

  8. go语言之进阶篇通过select实现斐波那契数列

    一.select作用 Go里面提供了一个关键字select,通过select可以监听channel上的数据流动. select的用法与switch语言非常类似,由select开始一个新的选择块,每个选 ...

  9. jQuery EasyUI Datagrid性能优化专题(转)

    jQuery  EasyUI的Datagrid组件功能算是很强大了,不过性能确实不怎么乐观,而对于性能问题,网络上几乎也找不到相关的优化资料,所谓的牛人们可能 都望而却步了.本博客以后会带着分析Dat ...

  10. Everything 使用技巧 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...