题目

有\(n\)个游戏,每个游戏只要能进行就必须进行,

对于每个游戏有两堆石子,每次可以将数量多的中取出小堆石子数量的整数倍,

无法操作者为负,问先手是否必胜


分析

如果单个游戏最大操作次数为奇数次先手必胜,

如果当前局面为必败局面,必须尽量缩短步数,否则尽量延长步数,

若\(x<y,\lfloor\frac{y}{x}\rfloor>1\)先手必胜,步数由\(sg[y\pmod x][x]\)决定,

否则需要\(sg[y\pmod x][x]\)决定先手胜负


代码

#include <cstdio>
#define rr register
using namespace std;
const int N=1011;
int step[N][N],sg[N][N],n;
inline signed max(int a,int b){return a>b?a:b;}
signed main(){
for (rr int i=1;i<N;++i)
for (rr int j=1;j<=i;++j)
if (i/j==1) step[j][i]=step[i%j][j]+1,sg[j][i]=sg[i%j][j]^1;
else step[j][i]=step[i%j][j]+sg[i%j][j]+(sg[j][i]=1);
while (scanf("%d",&n)==1){
rr int ans=0;
for (rr int i=1,x,y;i<=n;++i){
scanf("%d%d",&x,&y);
if (x>y) x^=y,y^=x,x^=y;
ans=max(ans,step[x][y]);
}
puts(ans&1?"MM":"GG");
}
return 0;
}

#Every-SG#HDU 3595 GG and MM的更多相关文章

  1. hdu 3595 GG and MM 博弈论

    同时进行,必须操作这就是Every-SG的特点 同样在贾志豪的论文中有提到这种游戏:组合游戏略述——浅谈SG游戏的若干拓展及变形 其中这个游戏特点不仅有必胜和必败,而且有时间长短的博弈,对于自己必胜的 ...

  2. HDU 3595 GG and MM [Every-SG]

    传送门 题意: 两个数$x,y$,一个人的决策为让大数减去小数的任意倍数(结果不能为负),出现0的人胜 一堆这样的游戏同时玩 Every-SG 游戏规定,对于还没有结束的单一游戏,游戏者必须对该游戏进 ...

  3. GG and MM HDU - 3595 Every-SG

    $ \color{#0066ff}{ 题目描述 }$ 两堆石子,GG和MM轮流取,每次在一堆石子中取另一堆石子的k\((k\ge1)\)倍,不能操作的输 现在二人要玩n个这样的游戏,每回合每个人对每个 ...

  4. HDU 3595 every-sg模型

    多个子游戏同时进行,每个子游戏给出两个数a,b,可以将大的数减去k倍小的数,不能操作者输. 策略就是对于一个必胜的游戏要使得步数更长,对于一个必败的游戏使得步数最短. 以下都来自贾志豪的论文.. 对于 ...

  5. 【HDU3595】GG and MM(博弈论)

    [HDU3595]GG and MM(博弈论) 题面 HDU 一个游戏由多个游戏组成,每次每个操作者必须操作所有可以操作的游戏,操作集合为空者输. 每个游戏由两堆石子组成,每次可以从较多的那一堆中取走 ...

  6. Java网络编程-你是GG还是MM?

    第六阶段 网络编程 每一台计算机通过网络连接起来,达到了数据互动的效果,而网络编程所解决的问题就是如何让程序与程序之间实现数据的通讯与互动 在吗?你是GG还是MM? (一) 网络模型概述 (1) 两大 ...

  7. 博弈论与SG函数

    巴什博奕: 两个顶尖聪明的人在玩游戏,有n个石子,每人可以随便拿1−m个石子,不能拿的人为败者,问谁会胜利 结论: 设当前的石子数为\(n=k∗(m+1)\)即\(n%(m+1)==0\)时先手一定失 ...

  8. 博弈论题目总结(二)——SG组合游戏及变形

    SG函数 为了更一般化博弈问题,我们引入SG函数 SG函数有如下性质: 1.如果某个状态SG函数值为0,则它后继的每个状态SG函数值都不为0 2.如果某个状态SG函数值不为0,则它至少存在一个后继的状 ...

  9. 每一个可以移动的棋子都要移动——Every-SG 游戏

    先看一个问题 HDU 3595 GG and MM (Every_SG博弈) 题目有N个游戏同时进行,每个游戏有两堆石子,每次从个数多的堆中取走数量小的数量的整数倍的石子.取最后一次的获胜.并且N个游 ...

  10. Every-SG游戏

    参考自 石家庄二中 贾志豪 IOI2009国家集训队论文 <组合游戏略述—— 浅谈 SG 游戏的若干拓展及变形> 一.定义 游戏规则加上 对于还没有结束的所有单一游戏,游戏者必须对其进行决 ...

随机推荐

  1. 具备有效期的localStorage存储

    具备有效期的localStorage存储 类方式 // 具备有效期的localStorage存储-类方式. class LocalStorageWrapper { // 存储数据到localStora ...

  2. EXE程序缺DLL怎么办

    起因 工程师发给用户一个VS编译的windows应用程序,客户反应打不开,报缺少dll.可是dll明明就在当前目录啊,为什么还会报错呢? 那应该是该DLL依赖的其它DLL不存在导致的,用depends ...

  3. 大众点评cat报警源码

    类时序 时许说明 判断是否是报警机器. 1分钟启动一个线程根据设置的报警条件,时间段去查询CAT报告数据. 根据返回的报告数据,逐层解析TYPE,NAME,RANGE中的数据是否满足报警条件. 只有全 ...

  4. 多线程系列(十一) -浅析并发读写锁StampedLock

    一.摘要 在上一篇文章中,我们讲到了使用ReadWriteLock可以解决多线程同时读,但只有一个线程能写的问题. 如果继续深入的分析ReadWriteLock,从锁的角度分析,会发现它有一个潜在的问 ...

  5. C++ 总结大项目:机房预约系统项目(数据结构 +指针+class(类操作)+面向对象三大特性[继承+多态+封装]+文件(读,写,保存,重写,重建,清空)+string(比较,截取,追加),+容器多个操作,嵌套+算法+清空数据)

    1 /** 2 * 项目名称:机房预约系统 3 * 时 间:2021-08 4 * 作 者:Bytezero!·zhenglei 5 * 6 * 系统简介: 7 * 学校有几个规格不同的机房,由于使用 ...

  6. .net中最简单的http请求调用(比如调用chatgpt的openAI接口)

    支持.Net Core(2.0及以上)/.Net Framework(4.5及以上),可以部署在Docker, Windows, Linux, Mac. http请求调用是开发中经常会用到的功能,因为 ...

  7. 使用 Docker 部署 Next Terminal 轻量级堡垒机

    1)Next Terminal 介绍 官网:https://next-terminal.typesafe.cn/ GitHub:https://github.com/dushixiang/next-t ...

  8. Lock wait timeout exceeded; try restarting transaction-Mysql报错

    一.问题由来 现在在做一个小程序的后台,使用Java写的,数据库使用的Mysql,之前一直调试的时候都好好的,今天在调试的时候突然就报一个错: ### Error updating database. ...

  9. period 发音 per + iod 没有ri音 (per=round od=hod=way)

    period 发音 per + iod 没有ri音 pɪər iə d peri-在周围 + od-=hod-路,引申词义时期,阶段,句号等. per = round period 美: [ˈpɪrɪ ...

  10. linux程序运行结果在打印到屏幕的同时写入文件

    1.使用script工具 script工具是一个非常使用的工具,可以把输出到终端的信息记录下来.使用方法如: (1)输入 script log.txt命令开始保存终端输出的信息 ,其中log.txt为 ...