「学习笔记」CDQ分治
CDQ 分治的思想最早由 IOI2008 金牌得主陈丹琦在高中时整理并总结,目前这个思想的拓展十分广泛。
- 优点:可以将数据结构或者 DP 优化掉一维
- 缺点:这是离线算法。
引入
让我们来看一个问题
有 $ n $ 个元素,第 $ i $ 个元素有 $ a_i,b_i,c_i $ 三个属性,设 $ f(i) $ 表示满足 $ a_j \leq a_i $ 且 $ b_j \leq b_i $ 且 $ c_j \leq c_i $ 且 $ j \ne i $ 的 \(j\) 的数量。
对于 $ d \in [0, n) $,求 $ f(i) = d $ 的数量。
$ 1 \leq n \leq 10^5$,$1 \leq a_i, b_i, c_i \le k \leq 2 \times 10^5 $。
这是一个三维偏序问题。
偏序问题:给定序列 \(A\),其中有序对 \((A_i, A_j)\),满足 \(i < j\) 且 \(A_i < A_j\) 这样的有序对我们称之为逆序对, 信息学竞赛中的逆序对问题,一般是要我们计数给出序列的逆序对个数的总和。其实可以把它看成一个特殊的二维偏序问题,或者说是离散化 \(x\) 坐标的二维偏序问题。
而 CDQ 分治,可以来解决三维偏序问题。
上面的引入问题就是模板题 P3810 【模板】三维偏序(陌上花开) 的题意。
P3810 【模板】三维偏序(陌上花开)
变量及其含义
struct node {
int x, y, z, cnt, ans;
} s1[N], s2[N];
x, y, z
: 三个元素。
cnt
:相同元素的个数。
ans
:统计答案。
对于第一维 \(a\),我们可以先从小到大 sort
一遍,\(i\) 号点前面的点的 \(a\) 都比 \(a_i\) 小,这样我们就减少了一维的处理,还剩下两维。
bool cmp1(node a, node b) {
if (a.x == b.x) {
if (a.y == b.y) {
return a.z < b.z;
}
else return a.y < b.y;
}
return a.x < b.x;
}
// main() 函数里面
n = read<int>(), k = read<int>();
mx = k;
for (int i = 1, x, y, z; i <= n; ++ i) {
x = read<int>(), y = read<int>(), z = read<int>();
s1[i].x = x, s1[i].y = y, s1[i].z = z;
}
sort(s1 + 1, s1 + n + 1, cmp1);
排完序后,我们可以将相同的元素合并为一个元素,结构体里的 cnt
就派上用场了。
int top = 0;
for (int i = 1; i <= n; ++ i) {
++ top;
if (s1[i].x != s1[i + 1].x || s1[i].y != s1[i + 1].y || s1[i].z != s1[i + 1].z) {
s2[++ m].x = s1[i].x;
s2[m].y = s1[i].y;
s2[m].z = s1[i].z;
s2[m].cnt = top;
top = 0;
}
}
然后处理第二维,对于第二维,我们要求 \(b_j \leq b_i\),按照前面的思路,我们肯定也要想方设法给第二维排序。
我们可以用 归并排序 的思想,先分别给左半个区间和右半个区间按照第二维从小到大排序,然后依次处理,由于是在 \(a\) 排好序的基础上进行的在排序,且这两个的区间还没有合并,所以无论怎么打乱,都可以保证左半边元素的 \(a\) 小于等于右半边元素的 \(a\)。
对于第三维,相当于到了我们找逆序对的环节了,我们有归并排序和树状数组两种方法,但由于归并排序已经放到前面去处理第二维了,所以我们用树状数组来处理第三维,将节点依次插入树状数组,统计。
bool cmp2(node a, node b) {
if (a.y == b.y) {
return a.z < b.z;
}
return a.y < b.y;
}
void add(int u, int w) {
for (int i = u; i <= mx; i += lowbit(i)) {
t[i] += w;
}
}
int ask(int u) {
int sum = 0;
for (int i = u; i; i -= lowbit(i)) {
sum += t[i];
}
return sum;
}
void cdq(int l, int r) {
if (l == r) return ;
int mid = (l + r) >> 1;
cdq(l, mid);
cdq(mid + 1, r);
sort(s2 + l, s2 + mid + 1, cmp2);
sort(s2 + mid + 1, s2 + r + 1, cmp2);
int i, j = l;
for (i = mid + 1; i <= r; ++ i) {
while (s2[i].y >= s2[j].y && j <= mid) { // 一旦不符合,先统计,然后右指针右移一位。
add(s2[j].z, s2[j].cnt); // 插入
++ j;
}
s2[i].ans += ask(s2[i].z);
}
for (i = l; i < j; ++ i) { // 清空数组,memset 常数太大。
add(s2[i].z, -s2[i].cnt);
}
}
最后就是处理答案了,完整代码:
/*
The code was written by yifan, and yifan is neutral!!!
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define lowbit(i) (i & (-i))
template<typename T>
inline T read() {
T x = 0;
bool fg = 0;
char ch = getchar();
while (ch < '0' || ch > '9') {
fg |= (ch == '-');
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
return fg ? ~x + 1 : x;
}
const int N = 1e5 + 5;
int n, k, mx, m;
int t[N << 1], res[N];
struct node {
int x, y, z, cnt, ans;
} s1[N], s2[N];
bool cmp1(node a, node b) {
if (a.x == b.x) {
if (a.y == b.y) {
return a.z < b.z;
}
else return a.y < b.y;
}
return a.x < b.x;
}
bool cmp2(node a, node b) {
if (a.y == b.y) {
return a.z < b.z;
}
return a.y < b.y;
}
void add(int u, int w) {
for (int i = u; i <= mx; i += lowbit(i)) {
t[i] += w;
}
}
int ask(int u) {
int sum = 0;
for (int i = u; i; i -= lowbit(i)) {
sum += t[i];
}
return sum;
}
void cdq(int l, int r) {
if (l == r) return ;
int mid = (l + r) >> 1;
cdq(l, mid);
cdq(mid + 1, r);
sort(s2 + l, s2 + mid + 1, cmp2);
sort(s2 + mid + 1, s2 + r + 1, cmp2);
int i, j = l;
for (i = mid + 1; i <= r; ++ i) {
while (s2[i].y >= s2[j].y && j <= mid) {
add(s2[j].z, s2[j].cnt);
++ j;
}
s2[i].ans += ask(s2[i].z);
}
for (i = l; i < j; ++ i) {
add(s2[i].z, -s2[i].cnt);
}
}
int main() {
n = read<int>(), k = read<int>();
mx = k;
for (int i = 1, x, y, z; i <= n; ++ i) {
x = read<int>(), y = read<int>(), z = read<int>();
s1[i].x = x, s1[i].y = y, s1[i].z = z;
}
sort(s1 + 1, s1 + n + 1, cmp1);
int top = 0;
for (int i = 1; i <= n; ++ i) {
++ top;
if (s1[i].x != s1[i + 1].x || s1[i].y != s1[i + 1].y || s1[i].z != s1[i + 1].z) {
s2[++ m].x = s1[i].x;
s2[m].y = s1[i].y;
s2[m].z = s1[i].z;
s2[m].cnt = top;
top = 0;
}
}
cdq(1, m);
for (int i = 1; i <= m; ++ i) {
res[s2[i].ans + s2[i].cnt - 1] += s2[i].cnt;
}
for (int i = 0; i < n; ++ i) {
printf("%d\n", res[i]);
}
return 0;
}
P5094 [USACO04OPEN] MooFest G 加强版
一道比较好的入门题。统计答案的时候稍微麻烦一些。
/*
The code was written by yifan, and yifan is neutral!!!
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<typename T>
inline T read() {
T x = 0;
bool fg = 0;
char ch = getchar();
while (ch < '0' || ch > '9') {
fg |= (ch == '-');
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
return fg ? ~x + 1 : x;
}
const int N = 5e4 + 5;
int n;
ll ans;
struct node {
ll v, x;
} g[N];
bool cmp1(node a, node b) {
return a.v < b.v;
}
bool cmp2(node a, node b) {
return a.x < b.x;
}
void cdq(int l, int r) {
if (l == r) return ;
int mid = (l + r) >> 1;
cdq(l, mid);
cdq(mid + 1, r);
sort(g + l, g + mid + 1, cmp2);
sort(g + mid + 1, g + r + 1, cmp2);
ll sum1 = 0, sum2 = 0;
for (int i = l; i <= mid; ++ i) {
sum2 += g[i].x;
}
for (int i = mid + 1, j = l; i <= r; ++ i) {
while (j <= mid && g[j].x < g[i].x) {
sum1 += g[j].x;
sum2 -= g[j].x;
++ j;
}
int cnt1 = j - l, cnt2 = mid - j + 1;
ans = ans + (cnt1 * g[i].x - sum1 + sum2 - cnt2 * g[i].x) * g[i].v;
}
}
int main() {
n = read<int>();
for (int i = 1; i <= n; ++ i) {
ll v = read<ll>(), x = read<ll>();
g[i] = node{v, x};
}
sort(g + 1, g + n + 1, cmp1);
cdq(1, n);
cout << ans << '\n';
return 0;
}
「学习笔记」CDQ分治的更多相关文章
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- 「学习笔记」Min25筛
「学习笔记」Min25筛 前言 周指导今天模拟赛五分钟秒第一题,十分钟说第二题是 \(\text{Min25}\) 筛板子题,要不是第三题出题人数据范围给错了,周指导十五分钟就 \(\text{AK ...
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- 「学习笔记」Treap
「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 ...
- 「学习笔记」字符串基础:Hash,KMP与Trie
「学习笔记」字符串基础:Hash,KMP与Trie 点击查看目录 目录 「学习笔记」字符串基础:Hash,KMP与Trie Hash 算法 代码 KMP 算法 前置知识:\(\text{Border} ...
- 「学习笔记」平衡树基础:Splay 和 Treap
「学习笔记」平衡树基础:Splay 和 Treap 点击查看目录 目录 「学习笔记」平衡树基础:Splay 和 Treap 知识点 平衡树概述 Splay 旋转操作 Splay 操作 插入 \(x\) ...
- 「学习笔记」wqs二分/dp凸优化
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...
- 【学习笔记】CDQ分治(等待填坑)
因为我对CDQ分治理解不深,所以这篇博客只是我现在的浅显理解有任何不对的,希望大佬指出. 首先就是CDQ分治适用的题型: (1)带修改,但修改互相独立 (2)必须允许离线 (3)解决数据结构的题,能把 ...
- 「学习笔记」斜率优化dp
目录 算法 例题 任务安排 题意 思路 代码 [SDOI2012]任务安排 题意 思路 代码 任务安排 再改 题意 思路 练习题 [HNOI2008]玩具装箱 思路 代码 [APIO2010]特别行动 ...
- 「学习笔记」ST表
问题引入 先让我们看一个简单的问题,有N个元素,Q次操作,每次操作需要求出一段区间内的最大/小值. 这就是著名的RMQ问题. RMQ问题的解法有很多,如线段树.单调队列(某些情况下).ST表等.这里主 ...
随机推荐
- Redis读书笔记(三)
单机数据库的实现 Redis数据库 Redis数据库的实现 struct redisServer { //... //保存服务器中的所有数据库, 数组 redisDB *db; //服务器的数据库数量 ...
- boot-admin整合flowable官方editor-app源码进行BPMN2-0建模(续)
boot-admin整合flowable官方editor-app源码进行BPMN2-0建模(续) 书接上回 项目源码仓库github 项目源码仓库gitee boot-admin 是一款采用前后端分离 ...
- 使用Jmeter测试MQTT
使用Jmeter测试MQTT 准备工作 JMeter本身没有MQTT的压力测试功能需要下载插件进行压力测试下载地址将下载好的mqtt-xmeter-2.0.2-jar-with-dependencie ...
- RTSP Server(LIVE555)源码分析(二)-服务器创建
一. 设置RTSP服务器配置 步骤1.5:rtspServer_Init--->BasicTaskScheduler::createNew()时序图如下: 1)步骤1.54,BasicTaskS ...
- pandlepanlde-01-必备数学知识
文章目录 必备数学知识 数学基础知识 高等数学 线性代数 行列式 矩阵 向量 线性方程组 矩阵的特征值和特征向量 二次型 概率论和数理统计 随机事件和概率 随机变量及其概率分布 多维随机变量及其分布 ...
- Python OOP面向对象编程
OOP 思想: 以模块思想解决工程问题 面向过程 VS 面向对象 由面向过程转向面向对象 例子,我要开一个学校,叫XXX 讲师 学生 班主任 教室 学校 常用名词 OO:面向对象 OOA: 分析 OO ...
- Windows屏幕解锁服务原理及实现(1)
https://github.com/zk2013/windows_remote_lock_unlock_screen 将生成的DLL注册至注册表 HKEY_LOCAL_MACHINE\SOFTWAR ...
- \n 和 std::endl 的区别
std::cout << std::endl; 等价于 std::cout << '\n' << std::flush; 除了写入换行符,std::endl 还会刷 ...
- 2021-06-23:给定一个数组arr,代表每个人的能力值。再给定一个非负数k,如果两个人能力差值正好为k,那么可以凑在一起比赛。一局比赛只有两个人,返回最多可以同时有多少场比赛。
2021-06-23:给定一个数组arr,代表每个人的能力值.再给定一个非负数k,如果两个人能力差值正好为k,那么可以凑在一起比赛.一局比赛只有两个人,返回最多可以同时有多少场比赛. 福大大 答案20 ...
- 深入理解 python 虚拟机:破解核心魔法——反序列化 pyc 文件
深入理解 python 虚拟机:破解核心魔法--反序列化 pyc 文件 在前面的文章当中我们详细的对于 pyc 文件的结构进行了分析,pyc 文件主要有下面的四个部分组成:魔术. Bite Filed ...