神经网络入门篇:神经网络的梯度下降(Gradient descent for neural networks)
神经网络的梯度下降
- 在这篇博客中,讲的是实现反向传播或者说梯度下降算法的方程组
单隐层神经网络会有\(W^{[1]}\),\(b^{[1]}\),\(W^{[2]}\),\(b^{[2]}\)这些参数,还有个\(n_x\)表示输入特征的个数,\(n^{[1]}\)表示隐藏单元个数,\(n^{[2]}\)表示输出单元个数。
在这个例子中,只介绍过的这种情况,那么参数:
矩阵\(W^{[1]}\)的维度就是(\(n^{[1]}, n^{[0]}\)),\(b^{[1]}\)就是\(n^{[1]}\)维向量,可以写成\((n^{[1]}, 1)\),就是一个的列向量。
矩阵\(W^{[2]}\)的维度就是(\(n^{[2]}, n^{[1]}\)),\(b^{[2]}\)的维度就是\((n^{[2]},1)\)维度。
还有一个神经网络的成本函数,假设在做二分类任务,那么的成本函数等于:
Cost function:
公式:
\(J(W^{[1]},b^{[1]},W^{[2]},b^{[2]}) = {\frac{1}{m}}\sum_{i=1}^mL(\hat{y}, y)\)
loss function和之前做logistic回归完全一样。
训练参数需要做梯度下降,在训练神经网络的时候,随机初始化参数很重要,而不是初始化成全零。当参数初始化成某些值后,每次梯度下降都会循环计算以下预测值:
\(\hat{y}^{(i)},(i=1,2,…,m)\)
公式1.28:
\(dW^{[1]} = \frac{dJ}{dW^{[1]}},db^{[1]} = \frac{dJ}{db^{[1]}}\)
公式1.29:
\({d}W^{[2]} = \frac{{dJ}}{dW^{[2]}},{d}b^{[2]} = \frac{dJ}{db^{[2]}}\)
其中
公式1.30:
\(W^{[1]}\implies{W^{[1]} - adW^{[1]}},b^{[1]}\implies{b^{[1]} -adb^{[1]}}\)
公式1.31:
\(W^{[2]}\implies{W^{[2]} - \alpha{\rm d}W^{[2]}},b^{[2]}\implies{b^{[2]} - \alpha{\rm d}b^{[2]}}\)
正向传播方程如下(之前讲过):
forward propagation:
(1)
\(z^{[1]} = W^{[1]}x + b^{[1]}\)
(2)
\(a^{[1]} = \sigma(z^{[1]})\)
(3)
\(z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}\)
(4)
\(a^{[2]} = g^{[2]}(z^{[z]}) = \sigma(z^{[2]})\)
反向传播方程如下:
back propagation:
公式1.32:
$ dz^{[2]} = A^{[2]} - Y , Y = \begin{bmatrix}y^{[1]} & y^{[2]} & \cdots & y^{[m]}\ \end{bmatrix} $
公式1.33:
$ dW^{[2]} = {\frac{1}{m}}dz{[2]}A $
公式1.34:
$ {\rm d}b^{[2]} = {\frac{1}{m}}np.sum({d}z^{[2]},axis=1,keepdims=True)$
公式1.35:
$ dz^{[1]} = \underbrace{W^{[2]T}{\rm d}z{[2]}}_{(n,m)}\quad\underbrace{{g{[1]}}{'}}_{activation ; function ; of ; hidden ; layer}\quad\underbrace{(z{[1]})}_{(n,m)} $
公式1.36:
\(dW^{[1]} = {\frac{1}{m}}dz^{[1]}x^{T}\)
公式1.37:
\({\underbrace{db^{[1]}}_{(n^{[1]},1)}} = {\frac{1}{m}}np.sum(dz^{[1]},axis=1,keepdims=True)\)
上述是反向传播的步骤,注:这些都是针对所有样本进行过向量化,\(Y\)是\(1×m\)的矩阵;这里np.sum
是python的numpy命令,axis=1
表示水平相加求和,keepdims
是防止python输出那些古怪的秩数\((n,)\),加上这个确保阵矩阵\(db^{[2]}\)这个向量输出的维度为\((n,1)\)这样标准的形式。
目前为止,计算的都和Logistic回归十分相似,但当开始计算反向传播时,需要计算,是隐藏层函数的导数,输出在使用sigmoid函数进行二元分类。这里是进行逐个元素乘积,因为\(W^{[2]T}dz^{[2]}\)和\((z^{[1]})\)这两个都为\((n^{[1]},m)\)矩阵;
还有一种防止python输出奇怪的秩数,需要显式地调用reshape
把np.sum
输出结果写成矩阵形式。
以上就是正向传播的4个方程和反向传播的6个方程,这里是直接给出的。
神经网络入门篇:神经网络的梯度下降(Gradient descent for neural networks)的更多相关文章
- 机器学习(1)之梯度下降(gradient descent)
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...
- 梯度下降(Gradient Descent)小结 -2017.7.20
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training se ...
- 梯度下降(gradient descent)算法简介
梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...
- 梯度下降(Gradient descent)
首先,我们继续上一篇文章中的例子,在这里我们增加一个特征,也即卧室数量,如下表格所示: 因为在上一篇中引入了一些符号,所以这里再次补充说明一下: x‘s:在这里是一个二维的向量,例如:x1(i)第i间 ...
- (二)深入梯度下降(Gradient Descent)算法
一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- CS229 2.深入梯度下降(Gradient Descent)算法
1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainS ...
- 回归(regression)、梯度下降(gradient descent)
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...
- 吴恩达深度学习:2.3梯度下降Gradient Descent
1.用梯度下降算法来训练或者学习训练集上的参数w和b,如下所示,第一行是logistic回归算法,第二行是成本函数J,它被定义为1/m的损失函数之和,损失函数可以衡量你的算法的效果,每一个训练样例都输 ...
- 梯度下降算法 Gradient Descent
梯度下降算法 Gradient Descent 梯度下降算法是一种被广泛使用的优化算法.在读论文的时候碰到了一种参数优化问题: 在函数\(F\)中有若干参数是不确定的,已知\(n\)组训练数据,期望找 ...
随机推荐
- node:windows script host 錯誤 console未定义
错误背景 在开发npm包时,碰到此项报错 解决方案 选中任意js文件,选择打开方式,指定到node中即可
- quarkus依赖注入之四:选择注入bean的高级手段
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是<quarkus依赖注入> ...
- 调研capacitor兼容openharmony平台可行性
团队可能需要对开源的 capacitor 跨平台框架进行扩展,以生产支持 OpenHarmony 平台的应用,在此调研可行性.实现路径和预期工作量. 可行性分析 在验证 capacitor 是否可以将 ...
- Linux 过滤进程和端口号
IDEA覆盖率测速显示百分比 ctrl + alt + F6 取消勾选 ps - ef | grep java过滤Java进程 netstat -anop | grep 74933 过滤端口号 重命名 ...
- Linux第四章(80X86保护模式及其编程)
80X86保护模式及其编程 80X86基础知识 保护模式内存管理 各种保护措施 中断和异常处理 任务管理 保护模式编程的初始化 一个简单的多任务内核 4.1 80X86系统寄存器和系统指令 为了协助处 ...
- QA|20221001|SecureCRT自动断开怎么办?
Q:SecureCRT自动断开怎么办? A:如下设置
- 2.7 PE结构:重定位表详细解析
重定位表(Relocation Table)是Windows PE可执行文件中的一部分,主要记录了与地址相关的信息,它在程序加载和运行时被用来修改程序代码中的地址的值,因为程序在不同的内存地址中加载时 ...
- Mac SpringBoot项目 Gradle 7.3 转 Maven 手把手教学,包学会~
导读 最近我手上有个使用Gradle构建的项目,国内使用Gradle的人相对较少.而且我也觉得Gradle的依赖管理方式有些复杂,让我感到有些困惑.因此,我想将项目转换为Maven构建方式.Maven ...
- windows系统上的大文件拆分合并
上周碰到一个并不算很大的问题,但是也有记录的价值. 从公司带出来的离线补丁包需要传到客户服务器上,但是被告知并不能在现场机器上插U盘,会触发告警.上传只能把U盘上的内容通过私人笔记本刻录到光盘上,插光 ...
- 为什么 Rust 备受开发者青睐?
引子 作为一名敏锐的前端开发者,您可能早已对 Rust 有所耳闻,毕竟近几年,使用 Rust 开发的前端构建工具每经发布,其卓越的性能数据总是能带来社区的一阵惊叹. 图片来源:https://swc. ...