Boruta特征选择
Boruta特征选择
官方github地址:https://github.com/scikit-learn-contrib/boruta_py?tab=readme-ov-file
论文地址:https://www.jstatsoft.org/article/view/v036i11
官方代码:
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from boruta import BorutaPy
# load X and y
# NOTE BorutaPy accepts numpy arrays only, hence the .values attribute
X = pd.read_csv('examples/test_X.csv', index_col=0).values
y = pd.read_csv('examples/test_y.csv', header=None, index_col=0).values
y = y.ravel()
# define random forest classifier, with utilising all cores and
# sampling in proportion to y labels
rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5)
# define Boruta feature selection method
feat_selector = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=1)
# find all relevant features - 5 features should be selected
feat_selector.fit(X, y)
# check selected features - first 5 features are selected
feat_selector.support_
# check ranking of features
feat_selector.ranking_
# call transform() on X to filter it down to selected features
X_filtered = feat_selector.transform(X)
在本地运行时出现了问题:AttributeError: module 'numpy' has no attribute 'int'. np.int
was a deprecated alias for the builtin int
.就是numpy的1.20版本以后的都不在支持np.int
,我尝试了降低numpy版本,但是报错wheel出问题了。看了github上的issues很多人都遇到了同样的问题,解决办法就是在调用boruta = BorutaPy(estimator=rf)
前加三行代码:
np.int = np.int32
np.float = np.float64
np.bool = np.bool_
boruta = BorutaPy(estimator=rf)
boruta.fit(x, y)
下面是我修改后以及适配我的需求的代码:
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from boruta import BorutaPy
import numpy as np
file_names_to_add = ['xxx', 'xxxx']
file_path2 = '../xxxx'
for file_name in file_names_to_add:
input_file_path = f"{file_path2}{file_name}.xlsx"
print(input_file_path)
sheet_name_nor = 'xxx'
y_tos = ['xxx', '...']
for y_to in y_tos:
sheet_name_uni = y_to
print(sheet_name_uni)
df = pd.read_excel(input_file_path, sheet_name=sheet_name_nor)
cols_to_pre = ['xxxxxxx', 'xxxxxx','...']
missing_cols = [col for col in cols_to_pre if col not in df.columns]
if missing_cols:
print(f"{missing_cols} not found in the, skipping.")
cols_to_pre = [col for col in cols_to_pre if col in df.columns]
# load X and y
# NOTE BorutaPy accepts numpy arrays only, hence the .values attribute
X = df[cols_to_pre].values
y = df[y_to].values
np.int = np.int32
np.float = np.float64
np.bool = np.bool_
# define random forest classifier, with utilising all cores and
# sampling in proportion to y labels
rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5)
# define Boruta feature selection method
feat_selector = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=1)
# find all relevant features - 5 features should be selected
feat_selector.fit(X, y)
# # check selected features - first 5 features are selected
# feat_selector.support_
# # check ranking of features
# feat_selector.ranking_
# call transform() on X to filter it down to selected features
# X_filtered = feat_selector.transform(X)
selected_features = [cols_to_pre[i] for i, support in enumerate(feat_selector.support_) if support]
print('Selected features: ', selected_features)
print('Feature ranking: ', feat_selector.ranking_)
因为'feat_selector.support_' 放回的是一个布尔数组,当我们想打印出选出来的特征时直接打印不行,需要通过使用布尔索引来解决这个问题。
selected_features = [cols_to_pre[i] for i, support in enumerate(feat_selector.support_) if support]
上段代码遍历
cols_to_pre
列表,并且只选择feat_selector.support_
中为True
的列。
Boruta特征选择的更多相关文章
- 特征选择Boruta
A good feature subset is one that: contains features highly correlated with (predictive of) the clas ...
- 挑子学习笔记:特征选择——基于假设检验的Filter方法
转载请标明出处: http://www.cnblogs.com/tiaozistudy/p/hypothesis_testing_based_feature_selection.html Filter ...
- 用信息值进行特征选择(Information Value)
Posted by c cm on January 3, 2014 特征选择(feature selection)或者变量选择(variable selection)是在建模之前的重要一步.数据接口越 ...
- MIL 多示例学习 特征选择
一个主要的跟踪系统包含三个成分:1)外观模型,通过其可以估计目标的似然函数.2)运动模型,预测位置.3)搜索策略,寻找当前帧最有可能为目标的位置.MIL主要的贡献在第一条上. MIL与CT的不同在于后 ...
- 【转】[特征选择] An Introduction to Feature Selection 翻译
中文原文链接:http://www.cnblogs.com/AHappyCat/p/5318042.html 英文原文链接: An Introduction to Feature Selection ...
- 单因素特征选择--Univariate Feature Selection
An example showing univariate feature selection. Noisy (non informative) features are added to the i ...
- 主成分分析(PCA)特征选择算法详解
1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到 ...
- 干货:结合Scikit-learn介绍几种常用的特征选择方法
原文 http://dataunion.org/14072.html 主题 特征选择 scikit-learn 作者: Edwin Jarvis 特征选择(排序)对于数据科学家.机器学习从业者来说非 ...
- 【Machine Learning】wekaの特征选择简介
看过这篇博客的都应该明白,特征选择代码实现应该包括3个部分: 搜索算法: 评估函数: 数据: 因此,代码的一般形式为: AttributeSelection attsel = new Attribut ...
- weka特征选择(IG、chi-square)
一.说明 IG是information gain 的缩写,中文名称是信息增益,是选择特征的一个很有效的方法(特别是在使用svm分类时).这里不做详细介绍,有兴趣的可以googling一下. chi-s ...
随机推荐
- NC16856 [NOI1999]钉子和小球.md
题目链接 题目 题目描述 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左 ...
- Js中Symbol对象
Js中Symbol对象 ES6引入了一种新的基本数据类型Symbol,表示独一无二的值,最大的用法是用来定义对象的唯一属性名,Symbol()函数会返回symbol类型的值,该类型具有静态属性和静态方 ...
- postgresql常见开发技巧
1.数据类型 名字 描述 bigint 有符号 8 字节整数 bigserial 自增八字节整数 bit [ (n) ] 定长位串 bit varying [ (n) ] 变长位串 boolean 逻 ...
- 链表--insert
分别是使用了二级指针和一级指针的两种方法,最后会按插入的顺序依次打印1,2,3,4 主要区别在于,使用二级指针,可以在main函数里直接用一个空的Node指针,而一级指针是在main函数里面先添加了一 ...
- RN运行ios报错No matching function for call to 'RCTBridgeModuleNameForClass'
xcode更新12.5后,ios运行报错No matching function for call to 'RCTBridgeModuleNameForClass' 解决方法: 在ios/Podfil ...
- django学习第六天---shell指令,单表基于双下划线的模糊查询,distinct注意点,字段的choices属性,url反向解析,orm多表操作创建表
shell指令 命令 python manage.py shell 在Terminal,执行上面这个指令会进入到python解释器环境中,并且加载了我们当前django项目配置环境,所以可以在当前sh ...
- 监控系统open-falcon安装部署
目录 官方文档 安装包下载地址 环境准备 安装redis 安装mysql 安装git 安装GO 安装后台 部署前端: 邮件报警 修改ALARM配置 修改报警接口 报警测试邮件展示 Q&A 官方 ...
- 【Azure Storage Account Table】询问批量将存储账户中的表嵌入另一个账户中的办法
问题描述 询问批量将存储账户中的表嵌入另一个账户中的办法? 问题解答 方式一:使用 AzCopy 使用Az copy做表格的导入导出,注意您需要使用Azcopy 7.3版本来实现对Table的操作,可 ...
- BIGO 的数据管理与应用实践
本文首发于 Nebula Graph Community 公众号 本文整理自 BIGO 在 nMeetp 上的主题分享,主要介绍 BIGO 过去一年在数据管理建设方面的理解和探索.而 BIGO 数据管 ...
- Java 交换两个变量的值
1 //交换两个变量的值 2 // 1 3 int nu1 = 10; 4 int nu2 = 20; 5 6 System.out.println("nu1 = "+nu1+&q ...