【BZOJ】2734: [HNOI2012]集合选数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2734
考虑$N=4$的情况:
\begin{bmatrix}
1&3 &X \\
2&X &X \\
4&X &X
\end{bmatrix}
其实就是吧最小值丢在了矩阵中${(0,0)}$的位置上,对于矩阵中的任意位置令${f[i][j]=f[i][j-1]*3}$,${f[i][j]=f[i-1][j]*2}$。
这样一来问题就转换为了:在一个矩阵中选取任意多的数字使得没有两个相邻的数字被同时选取的方案数。这个就是经典的轮廓线DP模型。
但是我们注意到并不是一个矩阵就覆盖了所有的数字,所以我们需要记录哪些数字已经在矩阵中出现过了,从小到大枚举数字,对于还没有出现的数字再把它丢到${(0,0)}$的位置在构造一个矩阵并进行DP。利用乘法原理计算贡献,易证一个数字有且仅有在一个矩阵中出现,所以这样就可以打成补充不漏的效果。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 1001000
#define llg long long
#define md 1000000001
#define yyj(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
llg n,m,N,ans,flag[maxn];
llg val[][],f[][(<<)];
llg work(llg S)
{
memset(val,,sizeof(val));
n=m=;
flag[S]=;
llg x=S;
val[][]=S;
while (x*<=N) {n++; val[n][]=val[n-][]*; flag[val[n][]]=; x*=; }
x=S;
while (x*<=N) {m++; val[][m]=val[][m-]*; flag[val[][m]]=; x*=;}
for (llg i=;i<=n;i++)
for (llg j=;j<=m;j++)
{
if (val[i][j-]*>N) break;
val[i][j]=val[i][j-]*;
flag[val[i][j]]=;
}
llg la=,now;
memset(f,,sizeof(f));
f[la][]=;
for (llg i=;i<=n;i++)
for (llg j=;j<=m;j++)
{
now=la^;
memset(f[now],,sizeof(f[now]));
for (llg zt=;zt<=(<<(m+));zt++)
if (f[la][zt]!=)
{
llg nzt=zt;
f[la][zt]%=md;
if (nzt&(<<j)) nzt-=(<<j);
f[now][nzt]+=f[la][zt];
if ((val[i][j]==) || (zt&(<<j))) continue;
if (j!=)
{
if (zt&(<<(j-))) continue;
}
nzt=zt;
nzt|=(<<j);
f[now][nzt]+=f[la][zt];
}
la=now;
}
llg tot=;
for (llg i=;i<=(<<(m+));i++) tot+=f[now][i];
tot%=md;
return tot;
} int main()
{
yyj("a");
cin>>N;
ans=;
for (llg i=;i<=N;i++)
if (!flag[i])
{
ans*=work(i);
ans%=md;
}
cout<<ans;
return ;
}
【BZOJ】2734: [HNOI2012]集合选数的更多相关文章
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
- 【刷题】BZOJ 2734 [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]
传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- 2734: [HNOI2012]集合选数 - BZOJ
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
随机推荐
- Django框架----命名URL和URL反向解析
在使用Django 项目时,一个常见的需求是获得URL 的最终形式,以用于嵌入到生成的内容中(视图中和显示给用户的URL等)或者用于处理服务器端的导航(重定向等).人们强烈希望不要硬编码这些URL(费 ...
- Spring MVC数据绑定
1.绑定默认数据类型 当前端请求参数较为简单的时候,后台形参可以直接使用SpringMVC提供的参数类型来绑定数据. HttpServletRequest:通过request对象获取请求信息: Htt ...
- 使用splash爬去JavaScript动态请求的内容
https://blog.csdn.net/qq_32093267/article/details/78156184
- 深入理解softmax函数
Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值.Softmax模型可以用来给不同的对象分配概率.即使在之后,我们训练更加精细 ...
- Python求最大可能
也称为求一个集合的所有的子集 采用二进制方法: def PowerSetsBinary(items): #generate all combination of N items N = len(ite ...
- springmvc StringHttpMessageConverter 中文乱码的几种解决办法(亲测)
昨天,将一个原来使用JSR 311作为restful实现的测试系统改成了使用spring mvc,最后测试的时候发现输出的json字符串为乱码,从日志可以看出使用的是StringHttpMessage ...
- UI自动化(一)html基础
前端的三把利器 HTML:赤裸的一个人 CSS:华丽的衣服 JS/JavaScript:赋予这个人的行为,也就是动起来 DOM 就是将页面变成可操 HTML(超文本标记语言) html代码实际上就是一 ...
- 如何写好接口(php写app移动端接口示例)
原文链接:https://blog.csdn.net/xwh670570759/article/details/52130585?utm_source=blogxgwz0
- centos6.9 svn提交更新到网站根目录
一.首先创建网站根目录 ~] # mkdir -pv /export/home/cms/www_dyrs ~] # svn co svn://127.0.0.1/svn1 /export/home/c ...
- 【Python029--一个任务】
一.文件编写 任务:将文件(record.txt)中的数据进行分割,并按照以下规律保存起来: --小甲鱼的对话单独保存为boy_*.txt的文件(去掉“小甲鱼:”) --小客服的对话单独保存为girl ...