BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)
题目链接
斜率优化 不说了 网上很多 这的比较详细->Click Here or Here
//1700kb 60ms
#include<cstdio>
#include<cctype>
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=5e4+5,MAXIN=1e5;
int n,C,S[N],q[N];
char IN[MAXIN],*SS=IN,*TT=IN;
LL f[N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
inline LL Squ(LL x){
return x*x;
}
inline LL X(int j,int k){
return (S[j]-S[k])<<1;
}
inline LL Y(int j,int k){
return f[j]+Squ(S[j]+C)-(f[k]+Squ(S[k]+C));
}
int main()
{
n=read(),C=read()+1;
for(int i=1;i<=n;++i) S[i]=S[i-1]+read()+1;
// for(int i=1;i<=n;++i) S[i]+=i;
int h=1,t=1; q[1]=0;
for(int i=1;i<=n;++i)
{
while(h<t && Y(q[h+1],q[h])<=S[i]*X(q[h+1],q[h])) ++h;
f[i]=f[q[h]]+Squ(S[i]-S[q[h]]-C);
while(h<t && Y(i,q[t])*X(q[t],q[t-1])<=Y(q[t],q[t-1])*X(i,q[t])) --t;
q[++t]=i;
}
printf("%lld",f[n]);
return 0;
}
由决策单调,单调队列写法:\(\mathcal O(n\log n)\)
//2288kb 140ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 100000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=50005;
int n,L;
LL sum[N],f[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Node{
int l,r,pos;//pos是区间[l,r]的最优转移点
}q[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline LL Squ(LL x){
return x*x;
}
inline LL Cost(int i,int p){//在i之前,分割p处
return f[p]+Squ((LL)(i-p-1+sum[i]-sum[p]-L));
}
int Find(Node t,int x)
{
int l=t.l, r=t.r, mid;
while(l<=r)
if(mid=l+r>>1, Cost(mid,x)<Cost(mid,t.pos)) r=mid-1;
else l=mid+1;
return l;
}
int main()
{
n=read(), L=read();
for(int i=1; i<=n; ++i) sum[i]=sum[i-1]+read();
int h=1,t=1; q[1]=(Node){0,n,0};
for(int i=1; i<=n; ++i)
{
if(i>q[h].r) ++h;
f[i]=Cost(i,q[h].pos);
if(Cost(n,i)<Cost(n,q[t].pos))//为什么要拿n比??不解。
{
while(h<=t && Cost(q[t].l,i)<Cost(q[t].l,q[t].pos)) --t;//队尾区间的l用i都比pos更优了,而决策点是单调的,所以[l,r]肯定都要不选pos而选i了
if(h>t) q[++t]=(Node){i,n,i};
else
{
int Pos=Find(q[t],i);
q[t].r=Pos-1, q[++t]=(Node){Pos,n,i};
}
}
}
printf("%lld",f[n]);
return 0;
}
BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...
- BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...
- 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...
- 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12280 Solved: 5277[Submit][S ...
- [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性
[HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...
- BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12451 Solved: 5407[Submit][Status][Discuss] Descript ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
随机推荐
- nvm安装与使用
1.nvm是什么 nvm全名node.js version management,顾名思义是一个nodejs的版本管理工具.通过它可以安装和切换不同版本的nodejs.下面列出下载.安装及使用方法. ...
- 对HUAWEI-ManagedProvisioning的一次不完整分析
分析思路 关注点1:AndroidManifest.xml是Android应用的入口文件,包含有APP服务的权限.广播和启动位置. 关注点2:涉及到修改系统的函数,setWifiEnabled().I ...
- 【转】Python数据类型之“集合(Sets)与映射(Mapping)”
[转]Python数据类型之“集合(Sets)与映射(Mapping)” 一.集合类型(Sets) 集合对象是不同的(不可重复)hashable对象的无序集合.常见用法包括:成员关系测试.移除序列中的 ...
- XAF 与 CIIP
XAF 与 CIIP:网站:http://www.uims.top, XAF技术博客:http://www.cnblogs.com/foreachlife/ tylike 升级到 DevExpres ...
- ES系列二、CentOS7安装ES head6.3.1
1.Head插件简介 ElasticSearch-head是一个H5编写的ElasticSearch集群操作和管理工具,可以对集群进行傻瓜式操作. 显示集群的拓扑,并且能够执行索引和节点级别操作 搜索 ...
- 004_i686和x86_64的区别
找回TCL隐藏分区(转载) 用Wubi安装 Ubuntu 出现(Initranfs)问题的解决方案 i686和x86_64的区别 2009-04-11 08:19:31| 分类: 电脑问题 | 标 ...
- 最新 macOS Sierra 10.12.3 安装CocoaPods及使用详解
一.什么是CocoaPods 每种语言发展到一个阶段,就会出现相应的依赖管理工具,例如 Java 语言的 Maven,nodejs 的 npm.随着 iOS 开发者的增多,业界也出现了为 iOS 程序 ...
- 服务发现之consul的介绍、部署和使用
什么是服务发现 微服务的框架体系中,服务发现是不能不提的一个模块.我相信了解或者熟悉微服务的童鞋应该都知道它的重要性.这里我只是简单的提一下,毕竟这不是我们的重点.我们看下面的一幅图片: 图中 ...
- Slick.js+Animate.css 结合让网页炫动起来
一个代码示例: html部分 <link rel='stylesheet prefetch' href='//cdnjs.cloudflare.com/ajax/libs/animate.css ...
- 【linux】tar压缩不包含路径
-C 参数 文件路径 /home/test/files tar zcvf file.tar.gz -C /home/test files 这样压缩后,就是可以得当一个相对路径的压缩包了,直接排除掉/ ...