HBase针对性问题汇总
Q: Hbase的rk设计,Hbase优化
a\rowkey:hbase三维存储中的关键(rowkey:行键 ,columnKey(family+quilaty):列键 ,timestamp:时间戳)
\rowkey字典排序、越短越好
\使用id+时间:9527+20160517 \使用hash散列:dsakjkdfuwdsf+9527+20160518
\应用中,rowkey 一般10~100bytes,8字节的整数倍,有利于提高操作系统性能
b\Hbase优化
\分区:RegionSplit()方法 \NUMREGIONS=9
\column不超过3个
\硬盘配置,便于regionServer管理和数据备份及恢复
\分配合适的内存给regionserver
其他:
hbase查询
(1)get
(2)scan
使用startRow和endRow限制
A: HBase是三维有序存储的,三维指的是:RowKey(行健)、column key(columnFamily和qualifier)、TimeStamp(时间戳),通过这三个维度我们可以对HBase中的数据进行快速定位。下面我们主要来讨论RowKey的设计原则:
HBase中RowKey可以唯一标识一条记录,在HBase查询的时候,我们有两种方式,第一种是通过get()方法指定RowKey条件后获取唯一一条记录,第二种方式是通过scan()方法设置诸如startRow和endRow的参数进行范围匹配查找。所以说RowKey的设计至关重要,严重影响着查询的效率, RowKey的设计 主要是遵循以下几个原则:
1)、RowKey长度原则:RowKey是一个二进制码流,可以是任意字符串,最大长度为64KB,实际应用中一般为10~100bytes,存为byte[]字节数组,一般设计成定长。建议是越短越好,不要超过16个字节。原因一是数据的持久化文件HFile中是按照KeyValue存储的,如果RowKey过长比如100字节,1000万列数据光RowKey就要占用100*1000万=10亿个字节,将近1G数据,这会极大影响HFile的存储效率;原因二是memstore将缓存部分数据到内存,如果RowKey字段过长内存的有效利用率会降低,系统将无法缓存更多的数据,这会降低检索效率。因此RowKey的字节长度越短越好原因三是目前操作系统大都是64位,内存8字节对齐。控制在16个字节,8字节的整数倍利用操作系统的最佳特性。
2)、RowKey散列原则:如果RowKey是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将RowKey的高位作为散列字段,由程序循环生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer实现负载均衡的几率,如果没有散列字段,首字段直接是时间信息,将产生所有数据都在一个RegionServer上堆积的热点现象,这样在做数据检索的时候负载将会集中在个别RegionServer,降低查询效率。
3)、RowKey唯一原则:必须在设计上保证其唯一性。
RowKey是按照字典排序存储的,因此,设计RowKey时候,要充分利用这个排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放在一块。
举个例子:如果最近写入HBase表中的数据是最可能被访问的,可以考虑将时间戳作为RowKey的一部分,由于是字段排序,所以可以使用Long.MAX_VALUE-timeStamp作为RowKey,这样能保证新写入的数据在读取时可以别快速命中。
案例分析:
用户订单列表查询RowKey设计。
#需求场景
某用户根据查询条件查询历史订单列表
#查询条件
开始结束时间(orderTime)-----必选,
订单号(seriaNum),
状态(status),游戏号(gameID)
#结果显示要求
结果按照时间倒叙排列。
#解答
RowKey可以设计为:userNum$orderTime$seriaNum
注:这样设计已经可以唯一标识一条记录了,订单详情都是可以根据订单号seriaNum来确定。在模糊匹配查询的时候startRow和endRow只需要设置到userNum$orderTime即可,如下:
startRow=userNum$maxvalue-stopTime
endRow=userNum$maxvalue-startTime
其他字段用filter实现
淘宝2012年博客,HBase使用经验,写的真好!!!学习学习,有太多东西需要学习啦。
下面是本文总结的第一部分内容:表的设计相关的优化方法。
1. 表的设计
1.1 Pre-Creating Regions
默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据,直到这个region足够大了才进行切分。一种可以加快批量写入速度的方法是通过预先创建一些空的regions,这样当数据写入HBase时,会按照region分区情况,在集群内做数据的负载均衡。
有关预分区,详情参见:Table Creation: Pre-Creating Regions,下面是一个例子:
public static boolean createTable(HBaseAdmin admin, HTableDescriptor table, byte[][] splits)
throws IOException {
try {
admin.createTable(table, splits);
return true;
} catch (TableExistsException e) {
logger.info("table " + table.getNameAsString() + " already exists");
// the table already exists...
return false;
}
} public static byte[][] getHexSplits(String startKey, String endKey, int numRegions) {
byte[][] splits = new byte[numRegions-1][];
BigInteger lowestKey = new BigInteger(startKey, 16);
BigInteger highestKey = new BigInteger(endKey, 16);
BigInteger range = highestKey.subtract(lowestKey);
BigInteger regionIncrement = range.divide(BigInteger.valueOf(numRegions));
lowestKey = lowestKey.add(regionIncrement);
for(int i=0; i < numRegions-1;i++) {
BigInteger key = lowestKey.add(regionIncrement.multiply(BigInteger.valueOf(i)));
byte[] b = String.format("%016x", key).getBytes();
splits[i] = b;
}
return splits;
}
1.2 Row Key
HBase中row key用来检索表中的记录,支持以下三种方式:
- 通过单个row key访问:即按照某个row key键值进行get操作;
- 通过row key的range进行scan:即通过设置startRowKey和endRowKey,在这个范围内进行扫描;
- 全表扫描:即直接扫描整张表中所有行记录。
在HBase中,row key可以是任意字符串,最大长度64KB,实际应用中一般为10~100bytes,存为byte[]字节数组,一般设计成定长的。
row key是按照字典序存储,因此,设计row key时,要充分利用这个排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放在一块。
举个例子:如果最近写入HBase表中的数据是最可能被访问的,可以考虑将时间戳作为row key的一部分,由于是字典序排序,所以可以使用Long.MAX_VALUE - timestamp作为row key,这样能保证新写入的数据在读取时可以被快速命中。
1.3 Column Family
不要在一张表里定义太多的column family。目前Hbase并不能很好的处理超过2~3个column family的表。因为某个column family在flush的时候,它邻近的column family也会因关联效应被触发flush,最终导致系统产生更多的I/O。感兴趣的同学可以对自己的HBase集群进行实际测试,从得到的测试结果数据验证一下。
1.4 In Memory
创建表的时候,可以通过HColumnDescriptor.setInMemory(true)将表放到RegionServer的缓存中,保证在读取的时候被cache命中。
1.5 Max Version
创建表的时候,可以通过HColumnDescriptor.setMaxVersions(int maxVersions)设置表中数据的最大版本,如果只需要保存最新版本的数据,那么可以设置setMaxVersions(1)。
1.6 Time To Live
创建表的时候,可以通过HColumnDescriptor.setTimeToLive(int timeToLive)设置表中数据的存储生命期,过期数据将自动被删除,例如如果只需要存储最近两天的数据,那么可以设置setTimeToLive(2 * 24 * 60 * 60)。
1.7 Compact & Split
在HBase中,数据在更新时首先写入WAL 日志(HLog)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile。于此同时, 系统会在zookeeper中记录一个redo point,表示这个时刻之前的变更已经持久化了(minor compact)。
StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当StoreFile的大小达到一定阈值后,又会对 StoreFile进行分割(split),等分为两个StoreFile。
由于对表的更新是不断追加的,处理读请求时,需要访问Store中全部的StoreFile和MemStore,将它们按照row key进行合并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,通常合并过程还是比较快的。
实际应用中,可以考虑必要时手动进行major compact,将同一个row key的修改进行合并形成一个大的StoreFile。同时,可以将StoreFile设置大些,减少split的发生。
下面是本文总结的第二部分内容:写表操作相关的优化方法。
2. 写表操作
2.1 多HTable并发写
创建多个HTable客户端用于写操作,提高写数据的吞吐量,一个例子:
static final Configuration conf = HBaseConfiguration.create();
static final String table_log_name = “user_log”;
wTableLog = new HTable[tableN];
for (int i = 0; i < tableN; i++) {
wTableLog[i] = new HTable(conf, table_log_name);
wTableLog[i].setWriteBufferSize(5 * 1024 * 1024); //5MB
wTableLog[i].setAutoFlush(false);
}
2.2 HTable参数设置
2.2.1 Auto Flush
通过调用HTable.setAutoFlush(false)方法可以将HTable写客户端的自动flush关闭,这样可以批量写入数据到HBase,而不是有一条put就执行一次更新,只有当put填满客户端写缓存时,才实际向HBase服务端发起写请求。默认情况下auto flush是开启的。
2.2.2 Write Buffer
通过调用HTable.setWriteBufferSize(writeBufferSize)方法可以设置HTable客户端的写buffer大小,如果新设置的buffer小于当前写buffer中的数据时,buffer将会被flush到服务端。其中,writeBufferSize的单位是byte字节数,可以根据实际写入数据量的多少来设置该值。
2.2.3 WAL Flag
在HBae中,客户端向集群中的RegionServer提交数据时(Put/Delete操作),首先会先写WAL(Write Ahead Log)日志(即HLog,一个RegionServer上的所有Region共享一个HLog),只有当WAL日志写成功后,再接着写MemStore,然后客户端被通知提交数据成功;如果写WAL日志失败,客户端则被通知提交失败。这样做的好处是可以做到RegionServer宕机后的数据恢复。
因此,对于相对不太重要的数据,可以在Put/Delete操作时,通过调用Put.setWriteToWAL(false)或Delete.setWriteToWAL(false)函数,放弃写WAL日志,从而提高数据写入的性能。
值得注意的是:谨慎选择关闭WAL日志,因为这样的话,一旦RegionServer宕机,Put/Delete的数据将会无法根据WAL日志进行恢复。
2.3 批量写
通过调用HTable.put(Put)方法可以将一个指定的row key记录写入HBase,同样HBase提供了另一个方法:通过调用HTable.put(List<Put>)方法可以将指定的row key列表,批量写入多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高,网络传输RTT高的情景下可能带来明显的性能提升。
2.4 多线程并发写
在客户端开启多个HTable写线程,每个写线程负责一个HTable对象的flush操作,这样结合定时flush和写buffer(writeBufferSize),可以既保证在数据量小的时候,数据可以在较短时间内被flush(如1秒内),同时又保证在数据量大的时候,写buffer一满就及时进行flush。下面给个具体的例子:
for (int i = 0; i < threadN; i++) {
Thread th = new Thread() {
public void run() {
while (true) {
try {
sleep(1000); //1 second
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (wTableLog[i]) {
try {
wTableLog[i].flushCommits();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
};
th.setDaemon(true);
th.start();
}
下面是本文总结的第三部分内容:读表操作相关的优化方法。
3. 读表操作
3.1 多HTable并发读
创建多个HTable客户端用于读操作,提高读数据的吞吐量,一个例子:
static final Configuration conf = HBaseConfiguration.create();
static final String table_log_name = “user_log”;
rTableLog = new HTable[tableN];
for (int i = 0; i < tableN; i++) {
rTableLog[i] = new HTable(conf, table_log_name);
rTableLog[i].setScannerCaching(50);
}
3.2 HTable参数设置
3.2.1 Scanner Caching
hbase.client.scanner.caching配置项可以设置HBase scanner一次从服务端抓取的数据条数,默认情况下一次一条。通过将其设置成一个合理的值,可以减少scan过程中next()的时间开销,代价是scanner需要通过客户端的内存来维持这些被cache的行记录。
有三个地方可以进行配置:1)在HBase的conf配置文件中进行配置;2)通过调用HTable.setScannerCaching(int scannerCaching)进行配置;3)通过调用Scan.setCaching(int caching)进行配置。三者的优先级越来越高。
3.2.2 Scan Attribute Selection
scan时指定需要的Column Family,可以减少网络传输数据量,否则默认scan操作会返回整行所有Column Family的数据。
3.2.3 Close ResultScanner
通过scan取完数据后,记得要关闭ResultScanner,否则RegionServer可能会出现问题(对应的Server资源无法释放)。
3.3 批量读
通过调用HTable.get(Get)方法可以根据一个指定的row key获取一行记录,同样HBase提供了另一个方法:通过调用HTable.get(List<Get>)方法可以根据一个指定的row key列表,批量获取多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高而且网络传输RTT高的情景下可能带来明显的性能提升。
3.4 多线程并发读
在客户端开启多个HTable读线程,每个读线程负责通过HTable对象进行get操作。下面是一个多线程并发读取HBase,获取店铺一天内各分钟PV值的例子:
public class DataReaderServer {
//获取店铺一天内各分钟PV值的入口函数
public static ConcurrentHashMap<String, String> getUnitMinutePV(long uid, long startStamp, long endStamp){
long min = startStamp;
int count = (int)((endStamp - startStamp) / (60*1000));
List<String> lst = new ArrayList<String>();
for (int i = 0; i <= count; i++) {
min = startStamp + i * 60 * 1000;
lst.add(uid + "_" + min);
}
return parallelBatchMinutePV(lst);
}
//多线程并发查询,获取分钟PV值
private static ConcurrentHashMap<String, String> parallelBatchMinutePV(List<String> lstKeys){
ConcurrentHashMap<String, String> hashRet = new ConcurrentHashMap<String, String>();
int parallel = 3;
List<List<String>> lstBatchKeys = null;
if (lstKeys.size() < parallel ){
lstBatchKeys = new ArrayList<List<String>>(1);
lstBatchKeys.add(lstKeys);
}
else{
lstBatchKeys = new ArrayList<List<String>>(parallel);
for(int i = 0; i < parallel; i++ ){
List<String> lst = new ArrayList<String>();
lstBatchKeys.add(lst);
} for(int i = 0 ; i < lstKeys.size() ; i ++ ){
lstBatchKeys.get(i%parallel).add(lstKeys.get(i));
}
} List<Future< ConcurrentHashMap<String, String> >> futures = new ArrayList<Future< ConcurrentHashMap<String, String> >>(5); ThreadFactoryBuilder builder = new ThreadFactoryBuilder();
builder.setNameFormat("ParallelBatchQuery");
ThreadFactory factory = builder.build();
ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newFixedThreadPool(lstBatchKeys.size(), factory); for(List<String> keys : lstBatchKeys){
Callable< ConcurrentHashMap<String, String> > callable = new BatchMinutePVCallable(keys);
FutureTask< ConcurrentHashMap<String, String> > future = (FutureTask< ConcurrentHashMap<String, String> >) executor.submit(callable);
futures.add(future);
}
executor.shutdown(); // Wait for all the tasks to finish
try {
boolean stillRunning = !executor.awaitTermination(
5000000, TimeUnit.MILLISECONDS);
if (stillRunning) {
try {
executor.shutdownNow();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
} catch (InterruptedException e) {
try {
Thread.currentThread().interrupt();
} catch (Exception e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
} // Look for any exception
for (Future f : futures) {
try {
if(f.get() != null)
{
hashRet.putAll((ConcurrentHashMap<String, String>)f.get());
}
} catch (InterruptedException e) {
try {
Thread.currentThread().interrupt();
} catch (Exception e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
} catch (ExecutionException e) {
e.printStackTrace();
}
} return hashRet;
}
//一个线程批量查询,获取分钟PV值
protected static ConcurrentHashMap<String, String> getBatchMinutePV(List<String> lstKeys){
ConcurrentHashMap<String, String> hashRet = null;
List<Get> lstGet = new ArrayList<Get>();
String[] splitValue = null;
for (String s : lstKeys) {
splitValue = s.split("_");
long uid = Long.parseLong(splitValue[0]);
long min = Long.parseLong(splitValue[1]);
byte[] key = new byte[16];
Bytes.putLong(key, 0, uid);
Bytes.putLong(key, 8, min);
Get g = new Get(key);
g.addFamily(fp);
lstGet.add(g);
}
Result[] res = null;
try {
res = tableMinutePV[rand.nextInt(tableN)].get(lstGet);
} catch (IOException e1) {
logger.error("tableMinutePV exception, e=" + e1.getStackTrace());
} if (res != null && res.length > 0) {
hashRet = new ConcurrentHashMap<String, String>(res.length);
for (Result re : res) {
if (re != null && !re.isEmpty()) {
try {
byte[] key = re.getRow();
byte[] value = re.getValue(fp, cp);
if (key != null && value != null) {
hashRet.put(String.valueOf(Bytes.toLong(key,
Bytes.SIZEOF_LONG)), String.valueOf(Bytes
.toLong(value)));
}
} catch (Exception e2) {
logger.error(e2.getStackTrace());
}
}
}
} return hashRet;
}
}
//调用接口类,实现Callable接口
class BatchMinutePVCallable implements Callable<ConcurrentHashMap<String, String>>{
private List<String> keys; public BatchMinutePVCallable(List<String> lstKeys ) {
this.keys = lstKeys;
} public ConcurrentHashMap<String, String> call() throws Exception {
return DataReadServer.getBatchMinutePV(keys);
}
}
3.5 缓存查询结果
对于频繁查询HBase的应用场景,可以考虑在应用程序中做缓存,当有新的查询请求时,首先在缓存中查找,如果存在则直接返回,不再查询HBase;否则对HBase发起读请求查询,然后在应用程序中将查询结果缓存起来。至于缓存的替换策略,可以考虑LRU等常用的策略。
3.6 Blockcache
HBase上Regionserver的内存分为两个部分,一部分作为Memstore,主要用来写;另外一部分作为BlockCache,主要用于读。
写请求会先写入Memstore,Regionserver会给每个region提供一个Memstore,当Memstore满64MB以后,会启动 flush刷新到磁盘。当Memstore的总大小超过限制时(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),会强行启动flush进程,从最大的Memstore开始flush直到低于限制。
读请求先到Memstore中查数据,查不到就到BlockCache中查,再查不到就会到磁盘上读,并把读的结果放入BlockCache。由于BlockCache采用的是LRU策略,因此BlockCache达到上限(heapsize * hfile.block.cache.size * 0.85)后,会启动淘汰机制,淘汰掉最老的一批数据。
一个Regionserver上有一个BlockCache和N个Memstore,它们的大小之和不能大于等于heapsize * 0.8,否则HBase不能启动。默认BlockCache为0.2,而Memstore为0.4。对于注重读响应时间的系统,可以将 BlockCache设大些,比如设置BlockCache=0.4,Memstore=0.39,以加大缓存的命中率。
有关BlockCache机制,请参考这里:HBase的Block cache,HBase的blockcache机制,hbase中的缓存的计算与使用。
下面是本文总结的第四部分内容:数据计算相关的优化方法。
4. 数据计算
4.1 服务端计算
Coprocessor运行于HBase RegionServer服务端,各个Regions保持对与其相关的coprocessor实现类的引用,coprocessor类可以通过RegionServer上classpath中的本地jar或HDFS的classloader进行加载。
目前,已提供有几种coprocessor:
- Coprocessor:提供对于region管理的钩子,例如region的open/close/split/flush/compact等;
- RegionObserver:提供用于从客户端监控表相关操作的钩子,例如表的get/put/scan/delete等;
- Endpoint:提供可以在region上执行任意函数的命令触发器。一个使用例子是RegionServer端的列聚合,这里有代码示例。
以上只是有关coprocessor的一些基本介绍,本人没有对其实际使用的经验,对它的可用性和性能数据不得而知。感兴趣的同学可以尝试一下,欢迎讨论。
4.2 写端计算
4.2.1 计数
HBase本身可以看作是一个可以水平扩展的Key-Value存储系统,但是其本身的计算能力有限(Coprocessor可以提供一定的服务端计算),因此,使用HBase时,往往需要从写端或者读端进行计算,然后将最终的计算结果返回给调用者。举两个简单的例子:
- PV计算:通过在HBase写端内存中,累加计数,维护PV值的更新,同时为了做到持久化,定期(如1秒)将PV计算结果同步到HBase中,这样查询端最多会有1秒钟的延迟,能看到秒级延迟的PV结果。
- 分钟PV计算:与上面提到的PV计算方法相结合,每分钟将当前的累计PV值,按照rowkey + minute作为新的rowkey写入HBase中,然后在查询端通过scan得到当天各个分钟以前的累计PV值,然后顺次将前后两分钟的累计PV值相减,就得到了当前一分钟内的PV值,从而最终也就得到当天各个分钟内的PV值。
4.2.2 去重
对于UV的计算,就是个去重计算的例子。分两种情况:
- 如果内存可以容纳,那么可以在Hash表中维护所有已经存在的UV标识,每当新来一个标识时,通过快速查找Hash确定是否是一个新的UV,若是则UV值加1,否则UV值不变。另外,为了做到持久化或提供给查询接口使用,可以定期(如1秒)将UV计算结果同步到HBase中。
- 如果内存不能容纳,可以考虑采用Bloom Filter来实现,从而尽可能的减少内存的占用情况。除了UV的计算外,判断URL是否存在也是个典型的应用场景。
4.3 读端计算
如果对于响应时间要求比较苛刻的情况(如单次http请求要在毫秒级时间内返回),个人觉得读端不宜做过多复杂的计算逻辑,尽量做到读端功能单一化:即从HBase RegionServer读到数据(scan或get方式)后,按照数据格式进行简单的拼接,直接返回给前端使用。当然,如果对于响应时间要求一般,或者业务特点需要,也可以在读端进行一些计算逻辑。
5. 总结
作为一个Key-Value存储系统,HBase并不是万能的,它有自己独特的地方。因此,基于它来做应用时,我们往往需要从多方面进行优化改进(表设计、读表操作、写表操作、数据计算等),有时甚至还需要从系统级对HBase进行配置调优,更甚至可以对HBase本身进行优化。这属于不同的层次范畴。
总之,概括来讲,对系统进行优化时,首先定位到影响你的程序运行性能的瓶颈之处,然后有的放矢进行针对行的优化。如果优化后满足你的期望,那么就可以停止优化;否则继续寻找新的瓶颈之处,开始新的优化,直到满足性能要求。
以上就是从项目开发中总结的一点经验,如有不对之处,欢迎大家不吝赐教。
在大数据架构中,Hive和HBase是协作关系,数据流一般如下图:
- 通过ETL工具将数据源抽取到HDFS存储;
- 通过Hive清洗、处理和计算原始数据;
- HIve清洗处理后的结果,如果是面向海量数据随机查询场景的可存入Hbase
- 数据应用从HBase查询数据;
HBase针对性问题汇总的更多相关文章
- HBase系列文章汇总
本文整理汇总了本博客自去年学习HBase以来写的全部关于HBase的相关内容.持续更新中,很多其它内容.敬请关注! 相关知识: 1.<布隆过滤器(Bloom Filter)> 2.< ...
- hadoop备战:hadoop,hbase兼容版本号汇总
Hbase的安装须要考虑Hadoop的版本号,即兼容性.有不足的希望能指出. 下面考究官网得到的,关于hadoop版本号和hbase版本号可到下面网址中下载:http://mirror.bit.edu ...
- 伪分布式hbase数据迁移汇总
https://www.jianshu.com/p/990bb550be3b hbase0.94.11(hadoop为1.1.2,此电脑ip为172.19.32.128)向hbase1.1.2 (ha ...
- HBase常用命令汇总——综述(一)
hbase(main):009:0> help HBase Shell, version 1.2.4, r67592f3d062743907f8c5ae00dbbe1ae4f69e5af, Tu ...
- hbase 面试问题汇总
一.Hbase的六大特点: (1).表大:一个表可以有数亿行,上百万列. (2).无模式:每行都有一个可排序的主键和任意多的列,列可以根据需要动态增加,同一个表中的不同行的可以有截然不同的列. (3) ...
- HBase全网最佳学习资料汇总
HBase全网最佳学习资料汇总 摘要: HBase这几年在国内使用的越来越广泛,在一定规模的企业中几乎是必备存储引擎,互联网企业阿里巴巴.百度.腾讯.京东.小米都有数千台的HBase集群,中国电信的话 ...
- 大数据常见端口汇总-hadoop、hbase、hive、spark、kafka、zookeeper等(持续更新)
常见端口汇总:Hadoop: 50070:HDFS WEB UI端口 8020 : 高可用的HDFS RPC端口 9000 : 非高可用的HDFS RPC端口 8088 ...
- Hbase资料汇总
1.hbase api http://blog.csdn.net/u010967382/article/details/37878701
- openTSDB+HBase+ZK遇到的坑汇总
1.zookeeper返回的hbase地址是hostname,外网如何访问? 如果需要直接访问zk获取hbase地址进而访问,目前需要本机配置host ip hostname 如果是要长期解决方法, ...
随机推荐
- [No0000146]深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing)理解堆与栈3/4
前言 虽然在.Net Framework 中我们不必考虑内在管理和垃圾回收(GC),但是为了优化应用程序性能我们始终需要了解内存管理和垃圾回收(GC).另外,了解内存管理可以帮助我们理解在每一个程 ...
- Redis的概念及与MySQL的区别
学了MySQL相关知识后,了解到很多公司都会用mysql+redis互补使用的,今天学习整理一下Redis的相关知识. 首先是Redis和MySQL的区别: MySQL是典型的关系型数据库:Redis ...
- inotifywait实现目录监控--http://man.linuxde.net/inotifywait
sudo apt install inotify-tools while inotifywait -q -r -e create,delete,modify,move,attrib --exclude ...
- dbclient python ---influxdb -install -relay--http write--read.[create db]
1s=1000ms 1ms=1000 microseconds 1microsecond=1000 nanoseconds+01:00 from influxdb import InfluxDBCli ...
- =[Mathematics] 数学主题
https://www.douban.com/group/maths/ 圆锥体体积公式的证明
- Delphi IdHTTP 设置cookie 和访问后读取Cookie 值
procedure TForm1.btn1Click(Sender: TObject); var IdHTTP: TIdHTTP; mstrCookie: string; Cookies ...
- LeetCode 590 N-ary Tree Postorder Traversal 解题报告
题目要求 Given an n-ary tree, return the postorder traversal of its nodes' values. 题目分析及思路 题目给出一棵N叉树,要求返 ...
- MySQL 数据库登录查询
1. 进入到bin目录: 键入cd..,一直到出现C:\ 为止 然后cd bin所在路径: 如: C:\cd C:\Program Files\MySQL\MySQL Server 5.7 ...
- 安装MongoDB报错
尝试多次,最后找到解决方式: 在安装的最后一步的时候不要勾选左下角的compass即可 命令行mongod --version测试安装是否成功
- oracle常见的执行计划
访问表的执行计划: 全表扫描:TABLE ACCESS FULL ROWID扫描:TABLE ACCESS BY USER ROWID (ROWID来源于用户在where条件中的指定)或 TABLE ...