思路

同zap-queries

莫比乌斯反演的板子

数据范围小到不用整除分块。。。

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int mu[1010000],isprime[1010000],iprime[1010000],cnt,n,m,d;
void prime(int n){
isprime[1]=true;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i]){
iprime[++cnt]=i;
mu[i]=-1;
}
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[iprime[j]*i]=true;
mu[iprime[j]*i]=-mu[i];
if(i%iprime[j]==0){
mu[iprime[j]*i]=0;
break;
}
}
}
}
signed main(){
prime(1000100);
scanf("%lld %lld %lld",&n,&m,&d);
if(n<m)
swap(n,m);
int ans=0;
for(int i=1;i<=n/d;i++){
ans+=mu[i]*(m/(i*d))*(n/(i*d));
}
printf("%lld\n",ans);
return 0;
}

P4450 双亲数的更多相关文章

  1. 【题解】Luogu P4450 双亲数

    原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 设F(t)表示满足gcd(x,y)%t=0的数对个数,f(t)表示满足gcd(x,y)=t的数对个数,实际上答案就是f(d) 这就满足莫比乌斯反演 ...

  2. 洛谷 - P4450 - 双亲数 - 整除分块

    https://www.luogu.org/fe/problem/P4450 应该不分块也可以. 求\(F(n,m,d)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^ ...

  3. [P4450] 双亲数 - 莫比乌斯反演,整除分块

    模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...

  4. BZOJ2045: 双亲数

    2045: 双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 602  Solved: 275[Submit][Status] Descripti ...

  5. bzoj 2045: 双亲数

    2045: 双亲数 Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描 ...

  6. 【BZOJ2045】双亲数 莫比乌斯反演

    [BZOJ2045]双亲数 Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用 ...

  7. [BZOJ2045]双亲数(莫比乌斯反演)

    双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 959  Solved: 455[Submit][Status][Discuss] Descri ...

  8. JZYZOJ 1375 双亲数 莫比乌斯反演

    http://172.20.6.3/Problem_Show.asp?id=1375 网上搜推理图. 有一段没有写莫比乌斯反演都快忘了..数学能力--,定理完全不会推,但是这道题整体来说应该是比较好写 ...

  9. LGOJ4450 双亲数

    Description link \[\sum \limits_{i = 1}^A \sum \limits_{j = 1}^B [ \gcd(i, j) = d] \] 要\(O(\sqrt n)\ ...

随机推荐

  1. html5-fieldset和legend和keygen元素的用法

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  2. latex 公式 和排版

    http://bbs.chinatex.org/forum.php?mod=viewthread&tid=7423 http://blog.sina.com.cn/s/blog_5e16f17 ...

  3. ENode, 领域模型,DDD

    Entity Framework之领域驱动设计实践 使用ENode框架前您需要了解的东西(初稿) 领域驱动设计实战--战略建模 http://www.cnblogs.com/yubaolee/p/Ca ...

  4. 【2017-04-17】类库、通用变量、is和as、委托

    类库dll文件,里边有很多被编译后的C#代码,不可阅读,不可修改,只能调用 1.类库创建 新建项目为类库,类库文件编写完成后,选择生成—生成解决方案,在debug文件夹下找到dll文件 2.类库引用 ...

  5. 【2017-2-26】C#String类、Math类、DateTime类

    String类 黑色小扳手:属性      后面不带括号 紫色小箱子:方法      后面带小括号 1.字符串.Length;   字符串长度,返回int类型 字符串的长度 2.字符串.TrimSta ...

  6. python 创建二维数组的方法

    废话不多说,直接上代码: #coding=utf-8 def two_di_demo1(): a=[] for i in range(10): a.append([]) for j in range( ...

  7. Google Analytics for Firebase 是一款免费的应用评估解决方案,可提供关于应用使用和用户互动情况的数据分析

    Google Analytics for Firebase Google Analytics for Firebase 是一款免费的应用评估解决方案,可提供关于应用使用和用户互动情况的数据分析.Fir ...

  8. P5015 标题统计

    P5015 标题统计 ‘   ’ 不等于空格,空格是个字符 代码: #include<iostream> #include<cstdio> #include<cmath& ...

  9. Java学习笔记之linux配置java环境变量(三种环境变量)

    0x00 压安装jdk 在shell终端下进入jdk-6u14-linux-i586.bin文件所在目录, 执行命令 ./jdk-6u14-linux-i586.bin 这时会出现一段协议,连继敲回车 ...

  10. Percona Server 5.6 安装TokuDB

    系统:Red Hat Enterprise Linux Server release 6.3 (Santiago) 数据库:Percona-Server-5.6.29-rel76.2-Linux.x8 ...