思路

欧拉定理

当a与m互质时

\[a^ {\phi (m)} \equiv 1 \ \ (mod\ m)
\]

扩展欧拉定理

当a与m不互质且\(b\ge \phi(m)\)时,

\[a^b \equiv a^{(b\%\phi(m))+\phi(m)} \ \ (mod\ m)
\]

当\(b<\phi(m)\)时,不一定正确

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define int long long
using namespace std;
int phi(int n){
int ans=n,x=n;
int up=sqrt(n+0.5);
for(int i=2;i<=up;i++){
if(x%i==0){
ans=ans/i*(i-1);
while(x%i==0)
x/=i;
}
}
if(x>1)
ans=ans/x*(x-1);
return ans;
}
int pow(int a,int b,int mod){
int ans=1;
while(b){
if(b&1)
ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return ans;
}
char t[20001000];
signed main(){
int a=0,b=0,c=0,f=true;
scanf("%lld %lld",&a,&b);
int mod=phi(b);
scanf("%s",t+1);
int len=strlen(t+1);
for(int i=1;i<=len;i++){
c=c*10+t[i]-'0';
if(c>=mod){
f=false;
c%=mod;
}
}
if(!f)
c+=mod;
printf("%lld\n",pow(a,c,b));
return 0;
}

P5091 【模板】欧拉定理的更多相关文章

  1. P5091 【模板】欧拉定理(欧拉降幂)

    P5091 [模板]欧拉定理 以上3张图是从这篇 博客 里盗的,讲的比较清楚. #include<bits/stdc++.h> using namespace std; typedef l ...

  2. 题解 P5091 【【模板】欧拉定理】

    欧拉定理:若 \(gcd(a,n)=1\),\(a^{\varphi(n)}\equiv 1(mod\ n)\) 设 \(1\sim n-1\) 中与 \(n\) 互素的 \(\varphi(n)\) ...

  3. [洛谷P5091]【模板】欧拉定理

    题目大意:求$a^b\bmod m(a\leqslant10^9,m\leqslant10^6,b\leqslant10^{2\times10^7})$ 题解:扩展欧拉定理:$$a^b\equiv\b ...

  4. P5091 【模板】扩展欧拉定理

    题目链接 昨天考试考到了欧拉公式,结果发现自己不会,就来恶补一下. 欧拉公式 \(a^b \bmod p = a^{b}\) \(b < \varphi(p)\) \(a^b \bmod p = ...

  5. LG5901 【模板】欧拉定理

    题意 题目描述 给你三个正整数,$a,m,b$,你需要求: $a^b \mod m$ 输入输出格式 输入格式: 一行三个整数,$a,m,b$ 输出格式: 一个整数表示答案 输入输出样例 输入样例#1: ...

  6. 【luoguP5091】【模板】欧拉定理

    题目链接 欧拉定理: 当\(a\),\(m\)互质时,\(a^{\phi(m)}\equiv 1 (mod ~ m)\) 扩展欧拉定理: 当\(B>\phi(m)\)时,\(a^B\equiv ...

  7. 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)

    题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...

  8. 数学--数论--欧拉降幂--P5091 欧拉定理

    题目背景 出题人也想写有趣的题面,可惜并没有能力. 题目描述 给你三个正整数,a,m,ba,m,ba,m,b,你需要求:ab mod ma^b \bmod mabmodm 输入格式 一行三个整数,a, ...

  9. 欧拉定理、欧拉函数、a/b%c

    怕忘了…… 欧拉函数 定义.证明.打表方法 欧拉定理 定义.证明 https://blog.csdn.net/zzkksunboy/article/details/73061013 剩余系.完系.简系 ...

随机推荐

  1. html5-了解元素的属性

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  2. Spark学习之路 (八)SparkCore的调优之开发调优

    摘抄自:https://tech.meituan.com/spark-tuning-basic.html 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark ...

  3. memcache、redis、mongoDB 如何选择?

    不同的 Nosql,其实应用的场景各有不同,所以我们应该先了解不同Nosql 之间的差别,然后分析什么才是最适合我使用的 Nosql. Nosql 介绍 Nosql 的全称是 Not Only Sql ...

  4. Spring boot 问题总结

    1. Spring boot 嵌入的tomcat不能启动: Unregistering JMX-exposed beans on shutdown   在官网(http://start.spring. ...

  5. flask 的session

    python的flask操作设置.获得与删除session 首先讲一下Python的flask中session与cookies的关系,session是储存在服务器中的,cookies是储存在浏览器本地 ...

  6. JustOj 1486: Hello, world!

    题目描述 This is the first problem for test. Since all we know the ASCII code, your job is simple: Input ...

  7. zabbix agent配置详解(windows)

    客户端操作  标注:监控zabbix_agentd客户端安装对象是win server 2008操作系统 64位. 1.  下载zabbix_agentd监控客户端软件安装包(windows操作系统客 ...

  8. springboot打包部署到tomcat

    一. springboot打成war包: 1. 首先查看是否为war 2. File----->ProjectStruture,选择Artifacts,中部点击“+”号 3. 按图中标记进行选择 ...

  9. modelform save

    ModelForm表单 save()方法 每一个ModelForm都有一个save()方法,这个方法可以更具绑定的form表单创建并且保存一个数据库对象,ModelForm的子类可以接受一个model ...

  10. Python基本数据类型——列表

    序列 序列是Python中的内置数据结构,常见的序列有:列表.字典.元组. 所有的序列都有自己的索引,程序可以通过索引来访问对应的值. 列表 list list是Python的一种最常见的内置数据类型 ...