题面

$ solution: $

讲真吧,这道题真的出得,嗯,太恐怖了。考场上这道题真的把我看懵了,这道题以前是见过的,但欧拉函数?我学过吗?一道容斥都要超时的题目,我都要为我自己点根香了,拿着gcd一顿乱搞,果然搞出了个0分。不得不承认博主的数学真的太渣了,但这道题的解题思路真的太妙了(因为渣所以必须学习!)。

首先,一个必须要知道的东西,操场是环形的(即 \((mod~n)\) 意义下的)。若第$ k $个格子可以被第 $ i $ 个同学踩到,那么必定存在一个 $ x $ 使 $ x\times a_i $ 在 \((mod~n)\)之后等于 $ k $ !而这也就相当于:存在一对 $ x $ 和 $ y $ 使得 $ x\times a_i-y*n=k $

而这也就牵扯到我们整除的一些性质了,要满足上面这个式子有整数解,充要条件是 $ (a_i,n)|k $ 也就是说所有能被 $ (a_i,n) $ 整除的格子都可以被第 $ i $ 位同学踩到!!!可是这样的话,有可能一个格子会被多个同学踩到,我们怎么去重呢?

我们发现产生重复的原因是我们的充要条件即 $ (a_i,n)|k (i\in m)$ ,有可能存在多个 $ i $ 能使条件成立,并存在多个 $ i $ 使它们的 $ (a_i,n) $ 存在公因数,然后我们考虑如何让重复的情况只出现一次:就是枚举\(n\)的约数(把 $ (a_i,n) $ 所有可能的值枚举一遍),枚举并判断它是否有贡献之后我们不算存在多少 $ k $ 可以整除它,我们只算有多少 $ (k,n) $ 能等于它。(因为我们枚举的 $ n $ 的约数会包括它的倍数,当下我们只算好它的贡献!)

我们把枚举的约数定为 $ d $ ,那我们就只要求有多少个 $ k $ ,使 $ (k,n)=d $ ,也就是求有多少个 $ k $ ,使 $ (\frac{k}{d} ,\frac{n}{d})=1 $ 也就是求欧拉函数了。

$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; int n,m,top,ans;
int a[55];
int b[100005]; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} inline int gcd(int x,int y){
if(!y)return x;
return gcd(y,x%y);
} inline int phi(int x){//单独求欧拉函数
int y=x;
for(rg i=2;i<=top&&x>1;++i){
if(!(x%b[i]))y=y/b[i]*(b[i]-1);
while(!(x%b[i]))x/=b[i];
}return y;
} int main(){
//freopen("running.in","r",stdin);
//freopen("running.out","w",stdout);
ans=n=qr(),m=qr();
for(rg i=1;i<=m;++i)a[i]=qr();
for(rg i=1;i<=sqrt(n);++i)
if(n%i==0)b[++top]=i,b[++top]=n/i;//枚举所有约数
sort(b+1,b+top+1);
for(rg i,k=1;k<=top;++k){
i=b[k];
for(rg j=1;j<=m;++j)
if(i%gcd(a[j],n)==0)//如果这个约数有贡献(即存在一个人使得(ai,n)|k)
{ans-=phi(n/i);break;}
} printf("%d\n",ans);
return 0;
}

五校联考 running (欧拉函数)的更多相关文章

  1. 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你

    [五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...

  2. 【五校联考1day2】JZOJ2020年8月12日提高组T1 对你的爱深不见底

    [五校联考1day2]JZOJ2020年8月12日提高组T1 对你的爱深不见底 题目 Description 出乎意料的是,幸运E 的小R 居然赢了那个游戏.现在欣喜万分的小R 想要写一张明信片给小Y ...

  3. 【JZOJ4813】【NOIP2016提高A组五校联考2】running

    题目描述 小胡同学是个热爱运动的好孩子. 每天晚上,小胡都会去操场上跑步,学校的操场可以看成一个由n 个格子排成的一个环形,格子按照顺时针顺序从0 到n-1 标号. 小胡观察到有m 个同学在跑步,最开 ...

  4. 【NOIP2016提高A组五校联考2】running

    题目 小胡同学是个热爱运动的好孩子. 每天晚上,小胡都会去操场上跑步,学校的操场可以看成一个由n个格子排成的一个环形,格子按照顺时针顺序从0 到n- 1 标号. 小胡观察到有m 个同学在跑步,最开始每 ...

  5. 【2020五校联考NOIP #4】今天的你依旧闪耀

    题面传送门 题意: 对于一个长度为 \(n\)(\(n\) 为偶数)的排列 \(p\),定义一次"变换"后得到的排列 \(p'\) 为: \(p'_i=\begin{cases}p ...

  6. 【五校联考3day2】C

    題意: 現有一平面直角坐標系,有n個點,每一個點必須向某一個方向發射射線,且任意一條射線必須與某一條坐標軸平行.定義一種發射射線的方案是合法的,則方案必須滿足: 1.沒有一條射線交叉 2.沒有一條射線 ...

  7. 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)

    题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...

  8. 五校联考R1 Day2T2 矩阵matrix(容斥)

    题目链接 容易想到容斥,但是很恶心,因为要对行和列都容斥,然后行+列又要容斥.. 于是得到\(O(nm\log)\)的做法. 就有70分了: #include <cstdio> #incl ...

  9. 五校联考模拟赛Day2T2矩阵(容斥原理)

    题意 $n * m$的网格,对其进行黑白染色,问每一行每一列至少有一个黑格子的方案数. Sol 考场上只会$n^3$的dp,还和指数级枚举一个分qwq 设$f[i][j]$表示到了第$i$行,已经有$ ...

随机推荐

  1. sorted 返回字典的所有键

  2. Change upload file limit in specified Webapllication in SharePoint (PowerShell)

    http://gallery.technet.microsoft.com/office/Change-upload-file-limit-89502ff2  http://sharepointrela ...

  3. 【codeforces 335E】 Counting Skyscrapers

    http://codeforces.com/problemset/problem/335/E (题目链接) 题意 懒得写了= = Solution 这题咋不上天= =. 参考题解:http://blo ...

  4. mathML如何在谷歌浏览器进行展示

    前几天不是做了个word公式的解析吗,就是office插入的公式是个xmlObject对象,读出来就是个String,所以要进行转换才能在网页上展示,其实我对这方面也不是很了解,然后各种百度解决方案, ...

  5. 解决centos6.5不能识别NTFS格式的移动硬盘或U盘问题

    0.说明 从windows8拷了一些东西到移动硬盘,然后转到新安装的centos6.5系统上,但是插上移动硬盘的时候发现不能识别,无法正常挂载移动硬盘.到网上一搜,发现原来centos系统默认不识别N ...

  6. LOJ#2095 选数

    给定n,k,l,r 问从[l, r]中选出n个数gcd为k的方案数. 解:稍微一想就能想到反演,F(x)就是[l, r]中x的倍数个数的n次方. 后面那个莫比乌斯函数随便怎么搞都行,当然因为这是杜教筛 ...

  7. 快速幂&快速乘法

    尽管快速幂与快速乘法好像扯不上什么关系,但是东西不是很多,就一起整理到这里吧 快速幂思想就是将ax看作x个a相乘,用now记录当前答案,然后将指数每次除以2,然后将当前答案平方,如果x的2进制最后一位 ...

  8. python3 操作MYSQL实例及异常信息处理--用traceback模块

    # 用traceback模块查看异常import traceback import pymysql db = pymysql.connect(host='localhost', user='root' ...

  9. 20190312 Windows安装Kafka

    1. 下载 使用版本2.1.1 官网下载地址 2. 安装 2.1. 前提 已安装ZooKeeper,可参考 20190311 Windows安装ZooKeeper 进行安装ZooKeeper 2.2. ...

  10. Java基础-Eclipse第三方安装包管理工具之Maven

    Java基础-Eclipse第三方安装包管理工具之Maven 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 玩过Linux的小伙伴应该都知道yum吧,我们只要把搭建好的yum仓库配 ...