S = A + A^2 + A^3 + … + A^k A是一个n*n矩阵

Sample Input

2 2 4 //n k MOD
0 1
1 1
Sample Output

1 2
2 3

先求 I + A + A^2 + A^3 + … + A^k  I为单位矩阵

我们来设置这样一个矩阵 B=
A I
O I
其中O是零矩阵,I是单位矩阵

将它乘方,得到
A^2 I+A
O I
乘三方,得到
A^3 I+A+A^2
O I
乘四方,得到
A^4 I+A+A^2+A^3
O I

然后B^(k+1) 的右上小矩阵 就是 I + A + A^2 + A^3 + … + A^k

记得 数组开大一点...因为要扩展成2n*2n的矩阵, 第一次开小了,数组越界=.=

 # include <iostream>
# include <cstdio>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; int MOD ;
int n ; struct Matrix
{
LL mat[][];
}; Matrix mul(Matrix a,Matrix b)
{
Matrix c;
for(int i=;i<*n;i++)
for(int j=;j<*n;j++)
{
c.mat[i][j]=;
for(int k=;k<*n;k++)
{
c.mat[i][j]=(c.mat[i][j] + a.mat[i][k]*b.mat[k][j])%MOD;
}
}
return c;
}
Matrix pow_M(Matrix a,int k )
{
Matrix ans;
memset(ans.mat,,sizeof(ans.mat));
for (int i=;i<*n;i++)
ans.mat[i][i]=;
Matrix temp=a;
while(k)
{
if(k&)ans=mul(ans,temp);
temp=mul(temp,temp);
k>>=;
}
return ans;
} int main ()
{
//freopen("in.txt","r",stdin) ;
int k ;
while(cin>>n>>k>>MOD)
{
Matrix A ;
int i , j ;
for (i = ; i < n ; i++)
for (j = ; j < n ; j++)
cin>>A.mat[i][j] ;
Matrix B ;
memset(B.mat,,sizeof(B.mat));
for (i = ; i < n ; i++) //扩展成2n * 2n的矩阵
{
for (j = ; j < n ; j++)
{
B.mat[i][j] = A.mat[i][j] ;
}
B.mat[n+i][n+i] = ;
B.mat[i][n+i] = ; }
B = pow_M(B,k+) ;
LL t ;
for (i = ; i < n ; i++)
for (j = ; j < n ; j++)
{
t = B.mat[i][n+j] % MOD ;
if (i == j)
t = (t + MOD - )%MOD ;
if (j+ != n)
cout<<t<<" " ;
else
cout<<t<<endl ;
} } return ;
}

poj 3233 S = A + A^2 + A^3 + … + A^k A是一个n X n矩阵 (矩阵快速幂)的更多相关文章

  1. Poj 3233 Matrix Power Series(矩阵二分快速幂)

    题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k ...

  2. 矩阵儿快速幂 - POJ 3233 矩阵力量系列

    不要管上面的标题的bug 那是幂的意思,不是力量... POJ 3233 Matrix Power Series 描述 Given a n × n matrix A and a positive in ...

  3. POJ 3233 Matrix Power Series (矩阵+二分+二分)

    题目地址:http://poj.org/problem?id=3233 题意:给你一个矩阵A,让你求A+A^2+……+A^k模p的矩阵值 题解:我们知道求A^n我们可以用二分-矩阵快速幂来求,而 当k ...

  4. POJ 3233 Matrix Power Series(矩阵高速功率+二分法)

    职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9.     这 ...

  5. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

  6. poj 3233 Matrix Power Series 矩阵求和

    http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...

  7. 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series

    poj 1575  Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...

  8. poj 3233 矩阵快速幂

    地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方  结果模m的相加和是多少 Given a n × n matrix A and a positive i ...

  9. POJ 3233 Matrix Power Series (矩阵乘法)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 11954   Accepted:  ...

随机推荐

  1. css postion 属性区别【原】

    CSS样式中的postion元素有四个属性,即static | absolute | fixed | relative. static: 默认值.无特殊定位,遵循HTML基本定位规则 . fixed: ...

  2. idea 插件的使用 进阶篇(个人收集使用中的)

    idea 插件的使用 进阶篇(个人收集使用中的) 恭喜你,如果你已经看到这篇文章,证明在idear使用上已经初有小成!那么就要向着大神进发了! 下边就是大神之路! 插件的设置 在 IntelliJ I ...

  3. SQL语句(五)数据的修改

    数据的修改 UPDATE 格式 UPDATE 表名 SET 字段名 = 字段值(这个可以是表达式) [WHERE 条件表达式] 关系运算符 (>.<.>=. <=.=.< ...

  4. Emacs org-mode导出html出错

    不知道为什么,当org文件中含有#+TITLE:xxx时,导出会报类似下面的错误: Wrong type argument: listp, #("xxx" 0 3 (:parent ...

  5. elasticsearch 单机多实例

    elasticsearch 配置单机器多实例 host: - - path data: /opt/elasticsearch/data/node1 /opt/elasticsearch/data/no ...

  6. NOIP2018ty记

    前置传送门:noip2018前流水账 Day-inf~Day-3 写流水账里了 懒得再写了 Day-2~Day-1 做了些noip的原题 真是奇怪,我天天爱跑步和逛公园都是1A的,结果反而有些普及组的 ...

  7. POJ 2407 Relatives (欧拉函数)

    题目链接 Description Given n, a positive integer, how many positive integers less than n are relatively ...

  8. Linux命令行与shell脚本编程大全.第3版(文字版) 超清文字-非扫描版 [免积分、免登录]

    此处免费下载,无需账号,无需登录,无需积分.收集自互联网,侵权通知删除. 点击下载:Linux命令行与shell脚本编程大全.第3版 (大小:约22M)

  9. bootstrap-table插件数据加载方式

    data-url 直接使用data-url在table标签中定义 使用load方法加载数据 $(“#finishingTask”).bootstrapTable(‘load’,data); //dat ...

  10. SpringMVC使用Hession发布远程服务

    (1)三个项目,Api(存放提供者和消费者共有的xx,例如实体类以及服务接口等等).Service(服务提供者).Provider(服务消费者) Api部分代码 package cn.coreqi.e ...