简单使用

utils.py
import redis
POOL=redis.ConnectionPool(host='127.0.0.1',port=6379) view.py
第一种方式 (通用方式) 不过不是普通连接用了连接池
def test( request):
conn=redis.Redis(connection_pool=POOL)
... 第二种方式(Django链接redis的方式) 在settings中配置
CACHES = {
"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://127.0.0.1:6379",
"OPTIONS": {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
"CONNECTION_POOL_KWARGS": {"max_connections": 100}
# "PASSWORD": "123",
}
}
} view.py
from django_redis import get_redis_connection
def test(request):
conn=get_redis_connection()
...

Python操作Redis之普通连接

redis-py提供两个类Redis和StrictRedis用于实现Redis的命令,StrictRedis用于实现大部分官方的命令,并使用官方的语法和命令,Redis是StrictRedis的子类,用于向后兼容旧版本的redis-py

import redis

r = redis.Redis(host='127.0.0.1', port=6379)
r.set('foo', 'Bar')
print(r.get('foo'))

Python操作Redis之连接池

redis-py使用connection pool来管理对一个redis server的所有连接,避免每次建立、释放连接的开销。默认,每个Redis实例都会维护一个自己的连接池。可以直接建立一个连接池,然后作为参数Redis,这样就可以实现多个Redis实例共享一个连接池

import redis

pool = redis.ConnectionPool(host='127.0.0.1', port=6379)
r = redis.Redis(connection_pool=pool)
r.set('foo', 'Bar')
print(r.get('foo'))

操作之String操作

String操作,redis中的String在在内存中按照一个name对应一个value来存储。

set(name, value, ex=None, px=None, nx=False, xx=False)

在Redis中设置值,默认,不存在则创建,存在则修改
参数:
ex,过期时间(秒)
px,过期时间(毫秒)
nx,如果设置为True,则只有name不存在时,当前set操作才执行,值存在,就修改不了,执行没效果
xx,如果设置为True,则只有name存在时,当前set操作才执行,值存在才能修改,值不存在,不会设置新值

setnx(name, value)

设置值,只有name不存在时,执行设置操作(添加),如果存在,不会修改

setex(name, value, time)

# 设置值
# 参数:
# time,过期时间(数字秒 或 timedelta对象)

psetex(name, time_ms, value)

# 设置值
# 参数:
# time_ms,过期时间(数字毫秒 或 timedelta对象

mset(*args, **kwargs)

批量设置值
如:
mset(k1='v1', k2='v2')

mget({'k1': 'v1', 'k2': 'v2'})

get(name)

获取值

mget(keys, *args)

批量获取
如:
mget('k1', 'k2')

r.mget(['k3', 'k4'])

getset(name, value)

设置新值并获取原来的值

getrange(key, start, end)

# 获取子序列(根据字节获取,非字符)
# 参数:
# name,Redis 的 name
# start,起始位置(字节)
# end,结束位置(字节)
# 如: "刘清政" ,0-3表示 "刘"

setrange(name, offset, value)

# 修改字符串内容,从指定字符串索引开始向后替换(新值太长时,则向后添加)
# 参数:
# offset,字符串的索引,字节(一个汉字三个字节)
# value,要设置的值

setbit(name, offset, value)

# 对name对应值的二进制表示的位进行操作

# 参数:
# name,redis的name
# offset,位的索引(将值变换成二进制后再进行索引)
# value,值只能是 1 或 0 # 注:如果在Redis中有一个对应: n1 = "foo",
那么字符串foo的二进制表示为:01100110 01101111 01101111
所以,如果执行 setbit('n1', 7, 1),则就会将第7位设置为1,
那么最终二进制则变成 01100111 01101111 01101111,即:"goo"

getbit(name, offset)

# 获取name对应的值的二进制表示中的某位的值 (0或1)

bitcount(key, start=None, end=None)

# 获取name对应的值的二进制表示中 1 的个数
# 参数:
# key,Redis的name
# start,位起始位置
# end,位结束位置

bitop(operation, dest, *keys)

# 获取多个值,并将值做位运算,将最后的结果保存至新的name对应的值

# 参数:
# operation,AND(并) 、 OR(或) 、 NOT(非) 、 XOR(异或)
# dest, 新的Redis的name
# *keys,要查找的Redis的name # 如:
bitop("AND", 'new_name', 'n1', 'n2', 'n3')
# 获取Redis中n1,n2,n3对应的值,然后讲所有的值做位运算(求并集),然后将结果保存 new_name 对应的值中

strlen(name)

# 返回name对应值的字节长度(一个汉字3个字节)

incr(self, name, amount=1)

# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。

# 参数:
# name,Redis的name
# amount,自增数(必须是整数) # 注:同incrby

incrbyfloat(self, name, amount=1.0)

# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。

# 参数:
# name,Redis的name
# amount,自增数(浮点型)

decr(self, name, amount=1)

# 自减 name对应的值,当name不存在时,则创建name=amount,否则,则自减。

# 参数:
# name,Redis的name
# amount,自减数(整数)

append(key, value)

# 在redis name对应的值后面追加内容

# 参数:
key, redis的name
value, 要追加的字符串

操作之Hash操作

hset(name, key, value)

# name对应的hash中设置一个键值对(不存在,则创建;否则,修改)

# 参数:
# name,redis的name
# key,name对应的hash中的key
# value,name对应的hash中的value # 注:
# hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)

hmset(name, mapping)

# 在name对应的hash中批量设置键值对

# 参数:
# name,redis的name
# mapping,字典,如:{'k1':'v1', 'k2': 'v2'} # 如:
# r.hmset('xx', {'k1':'v1', 'k2': 'v2'})

hget(name,key)

# 在name对应的hash中获取根据key获取value

hmget(name, keys, *args)

# 在name对应的hash中获取多个key的值

# 参数:
# name,reids对应的name
# keys,要获取key集合,如:['k1', 'k2', 'k3']
# *args,要获取的key,如:k1,k2,k3 # 如:
# r.mget('xx', ['k1', 'k2'])
# 或
# print r.hmget('xx', 'k1', 'k2')

hgetall(name)

# 获取name对应hash的所有键值
print(re.hgetall('xxx').get(b'name'))

hlen(name)

# 获取name对应的hash中键值对的个数

hkeys(name)

# 获取name对应的hash中所有的key的值

hvals(name)

# 获取name对应的hash中所有的value的值

hexists(name, key)

# 检查name对应的hash是否存在当前传入的key

hdel(name,*keys)

# 将name对应的hash中指定key的键值对删除
print(re.hdel('xxx','sex','name'))

hincrby(name, key, amount=1)

# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(整数)

hincrbyfloat(name, key, amount=1.0)

# 自增name对应的hash中的指定key的值,不存在则创建key=amount

# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(浮点数) # 自增name对应的hash中的指定key的值,不存在则创建key=amount

hscan(name, cursor=0, match=None, count=None)

# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆

# 参数:
# name,redis的name
# cursor,游标(基于游标分批取获取数据)
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如:
# 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None)
# 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None)
# ...
# 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕

hscan_iter(name, match=None, count=None)

# 利用yield封装hscan创建生成器,实现分批去redis中获取数据

# 参数:
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如:
# for item in r.hscan_iter('xx'):
# print item

操作之List操作

List操作,redis中的List在在内存中按照一个name对应一个List来存储。

lpush(name,values)

# 在name对应的list中添加元素,每个新的元素都添加到列表的最左边

# 如:
# r.lpush('oo', 11,22,33)
# 保存顺序为: 33,22,11 # 扩展:
# rpush(name, values) 表示从右向左操作

lpushx(name,value)

# 在name对应的list中添加元素,只有name已经存在时,值添加到列表的最左边

# 更多:
# rpushx(name, value) 表示从右向左操作

llen(name)

# name对应的list元素的个数

linsert(name, where, refvalue, value))

# 在name对应的列表的某一个值前或后插入一个新值

# 参数:
# name,redis的name
# where,BEFORE或AFTER(小写也可以)
# refvalue,标杆值,即:在它前后插入数据(如果存在多个标杆值,以找到的第一个为准)
# value,要插入的数据

r.lset(name, index, value)

# 对name对应的list中的某一个索引位置重新赋值

# 参数:
# name,redis的name
# index,list的索引位置
# value,要设置的值

r.lrem(name, value, num)

# 在name对应的list中删除指定的值

# 参数:
# name,redis的name
# value,要删除的值
# num, num=0,删除列表中所有的指定值;
# num=2,从前到后,删除2个;
# num=-2,从后向前,删除2个

lpop(name)

# 在name对应的列表的左侧获取第一个元素并在列表中移除,返回值则是第一个元素

# 更多:
# rpop(name) 表示从右向左操作

lindex(name, index)

在name对应的列表中根据索引获取列表元素

lrange(name, start, end)

# 在name对应的列表分片获取数据
# 参数:
# name,redis的name
# start,索引的起始位置
# end,索引结束位置 print(re.lrange('aa',0,re.llen('aa')))

ltrim(name, start, end)

# 在name对应的列表中移除没有在start-end索引之间的值
# 参数:
# name,redis的name
# start,索引的起始位置
# end,索引结束位置(大于列表长度,则代表不移除任何)

rpoplpush(src, dst)

# 从一个列表取出最右边的元素,同时将其添加至另一个列表的最左边
# 参数:
# src,要取数据的列表的name
# dst,要添加数据的列表的name

blpop(keys, timeout)

# 将多个列表排列,按照从左到右去pop对应列表的元素

# 参数:
# keys,redis的name的集合
# timeout,超时时间,当元素所有列表的元素获取完之后,阻塞等待列表内有数据的时间(秒), 0 表示永远阻塞 # 更多:
# r.brpop(keys, timeout),从右向左获取数据
爬虫实现简单分布式:多个url放到列表里,往里不停放URL,程序循环取值,但是只能一台机器运行取值,可以把url放到redis中,多台机器从redis中取值,爬取数据,实现简单分布式

brpoplpush(src, dst, timeout=0)

# 从一个列表的右侧移除一个元素并将其添加到另一个列表的左侧

# 参数:
# src,取出并要移除元素的列表对应的name
# dst,要插入元素的列表对应的name
# timeout,当src对应的列表中没有数据时,阻塞等待其有数据的超时时间(秒),0 表示永远阻塞

自定义增量迭代

# 由于redis类库中没有提供对列表元素的增量迭代,如果想要循环name对应的列表的所有元素,那么就需要:
# 1、获取name对应的所有列表
# 2、循环列表
# 但是,如果列表非常大,那么就有可能在第一步时就将程序的内容撑爆,所有有必要自定义一个增量迭代的功能:
import redis
conn=redis.Redis(host='127.0.0.1',port=6379)
# conn.lpush('test',*[1,2,3,4,45,5,6,7,7,8,43,5,6,768,89,9,65,4,23,54,6757,8,68])
# conn.flushall()
def scan_list(name,count=2):
index=0
while True:
data_list=conn.lrange(name,index,count+index-1)
if not data_list:
return
index+=count
for item in data_list:
yield item
print(conn.lrange('test',0,100))
for item in scan_list('test',5):
print('---')
print(item)

操作之Set操作

Set操作,Set集合就是不允许重复的列表

 sadd(name,values)

# name对应的集合中添加元素

scard(name)

获取name对应的集合中元素个数

sdiff(keys, *args)

在第一个name对应的集合中且不在其他name对应的集合的元素集合

sdiffstore(dest, keys, *args)

# 获取第一个name对应的集合中且不在其他name对应的集合,再将其新加入到dest对应的集合中

sinter(keys, *args)

# 获取多一个name对应集合的并集

sinterstore(dest, keys, *args)

# 获取多一个name对应集合的并集,再讲其加入到dest对应的集合中

sismember(name, value)

# 检查value是否是name对应的集合的成员

smembers(name)

# 获取name对应的集合的所有成员

smove(src, dst, value)

# 将某个成员从一个集合中移动到另外一个集合

spop(name)

# 从集合的右侧(尾部)移除一个成员,并将其返回

srandmember(name, numbers)

# 从name对应的集合中随机获取 numbers 个元素

srem(name, values)

# 在name对应的集合中删除某些值

srem(name, values)

# 在name对应的集合中删除某些值

sunion(keys, *args)

# 获取多一个name对应的集合的并集

sunionstore(dest,keys, *args)

# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中

sscan(name, cursor=0, match=None, count=None)
sscan_iter(name, match=None, count=None)

# 同字符串的操作,用于增量迭代分批获取元素,避免内存消耗太大

有序集合,在集合的基础上,为每元素排序;元素的排序需要根据另外一个值来进行比较,所以,对于有序集合,每一个元素有两个值,即:值和分数,分数专门用来做排序。

 zadd(name, *args, **kwargs)

# 在name对应的有序集合中添加元素
# 如:
# zadd('zz', 'n1', 1, 'n2', 2)
# 或
# zadd('zz', n1=11, n2=22)

zcard(name)

# 获取name对应的有序集合元素的数量

zcount(name, min, max)

# 获取name对应的有序集合中分数 在 [min,max] 之间的个数

zincrby(name, value, amount)

# 自增name对应的有序集合的 name 对应的分数

r.zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)

# 按照索引范围获取name对应的有序集合的元素

# 参数:
# name,redis的name
# start,有序集合索引起始位置(非分数)
# end,有序集合索引结束位置(非分数)
# desc,排序规则,默认按照分数从小到大排序
# withscores,是否获取元素的分数,默认只获取元素的值
# score_cast_func,对分数进行数据转换的函数 # 更多:
# 从大到小排序
# zrevrange(name, start, end, withscores=False, score_cast_func=float) # 按照分数范围获取name对应的有序集合的元素
# zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float)
# 从大到小排序
# zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)

zrank(name, value)

# 获取某个值在 name对应的有序集合中的排行(从 0 开始)

# 更多:
# zrevrank(name, value),从大到小排序

zrangebylex(name, min, max, start=None, num=None)

# 当有序集合的所有成员都具有相同的分值时,有序集合的元素会根据成员的 值 (lexicographical ordering)来进行排序,而这个命令则可以返回给定的有序集合键 key 中, 元素的值介于 min 和 max 之间的成员
# 对集合中的每个成员进行逐个字节的对比(byte-by-byte compare), 并按照从低到高的顺序, 返回排序后的集合成员。 如果两个字符串有一部分内容是相同的话, 那么命令会认为较长的字符串比较短的字符串要大 # 参数:
# name,redis的name
# min,左区间(值)。 + 表示正无限; - 表示负无限; ( 表示开区间; [ 则表示闭区间
# min,右区间(值)
# start,对结果进行分片处理,索引位置
# num,对结果进行分片处理,索引后面的num个元素 # 如:
# ZADD myzset 0 aa 0 ba 0 ca 0 da 0 ea 0 fa 0 ga
# r.zrangebylex('myzset', "-", "[ca") 结果为:['aa', 'ba', 'ca'] # 更多:
# 从大到小排序
# zrevrangebylex(name, max, min, start=None, num=None)

zrem(name, values)

# 删除name对应的有序集合中值是values的成员

# 如:zrem('zz', ['s1', 's2'])

zremrangebyrank(name, min, max)

# 根据排行范围删除

zremrangebyscore(name, min, max)

# 根据分数范围删除

zremrangebylex(name, min, max)

# 根据值返回删除

zscore(name, value)

# 获取name对应有序集合中 value 对应的分数

zinterstore(dest, keys, aggregate=None)

# 获取两个有序集合的交集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为: SUM MIN MAX

zunionstore(dest, keys, aggregate=None)

# 获取两个有序集合的并集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为: SUM MIN MAX

zscan(name, cursor=0, match=None, count=None, score_cast_func=float)
zscan_iter(name, match=None, count=None,score_cast_func=float)

# 同字符串相似,相较于字符串新增score_cast_func,用来对分数进行操作

其它操作

delete(*names)

# 根据删除redis中的任意数据类型

exists(name)

# 检测redis的name是否存在

keys(pattern='*')

# 根据模型获取redis的name

# 更多:
# KEYS * 匹配数据库中所有 key 。
# KEYS h?llo 匹配 hello , hallo 和 hxllo 等。
# KEYS h*llo 匹配 hllo 和 heeeeello 等。
# KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hillo

expire(name ,time)

# 为某个redis的某个name设置超时时间

rename(src, dst)

# 对redis的name重命名为

move(name, db))

# 将redis的某个值移动到指定的db下

randomkey()

# 随机获取一个redis的name(不删除)

type(name)

# 获取name对应值的类型

scan(cursor=0, match=None, count=None)
scan_iter(match=None, count=None)

# 同字符串操作,用于增量迭代获取key

管道

redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作,如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定多个命令,并且默认情况下一次pipline 是原子性操作。模仿事务,redis原生不支持事务,这种模仿也和真正的事务相差甚远。

import redis

pool = redis.ConnectionPool(host='10.211.55.4', port=6379)

r = redis.Redis(connection_pool=pool)

# pipe = r.pipeline(transaction=False)
# 拿到一个管道,transaction=True表示管道内部都是原子性
pipe = r.pipeline(transaction=True)
pipe.multi()
pipe.set('name', 'alex')
pipe.set('role', 'sb') pipe.execute()

Django中使用redis

方式一:

utils文件夹下,建立redis_pool.py

import redis
POOL = redis.ConnectionPool(host='127.0.0.1', port=6379,password='1234',max_connections=1000)

视图函数中使用:

import redis
from django.shortcuts import render,HttpResponse
from utils.redis_pool import POOL def index(request):
conn = redis.Redis(connection_pool=POOL)
conn.hset('kkk','age',18) return HttpResponse('设置成功')
def order(request):
conn = redis.Redis(connection_pool=POOL)
conn.hget('kkk','age') return HttpResponse('获取成功')

方式二:

安装django-redis模块

pip3 install django-redis

setting里配置:

# redis配置
CACHES = {
"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://127.0.0.1:6379",
"OPTIONS": {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
"CONNECTION_POOL_KWARGS": {"max_connections": 100}
# "PASSWORD": "123",
}
}
}

视图函数:

from django_redis import get_redis_connection
conn = get_redis_connection('default')
print(conn.hgetall('xxx'))

Redis常用操作大全和Python操作Redis的更多相关文章

  1. redis常用的命令行以及操作

    redis常用的命令行以及操作 转载酱紫人的理直气壮 最后发布于2018-07-30 17:00:41 阅读数 805  收藏 转载地址:https://blog.csdn.net/li_lening ...

  2. 数据库之redis篇(3)—— Python操作redis

    虽然前面两篇已经说了redis的一些配置安装什么的,篇幅有点长,可能看完了也不知道怎么操作,这里再浓缩一下: 什么是redis redis完全开源免费的,遵守BSD协议,是一个高性能的非关系型key- ...

  3. redis集群配置及python操作

    之前我们分析过喜马拉雅的爬取信息,使用分布式爬取,而且需要修改scrapy-redis的过滤算法为布隆过滤来减少redis内存占用,最后考虑这样还是不一定够,那么redis集群就是更好的一种选择方式了 ...

  4. Redis快速起步及Redis常用命令大全

    本系列教程内容提要 Java工程师之Redis实战系列教程教程是一个学习教程,是关于Java工程师的Redis知识的实战系列教程,本系列教程均以解决特定问题为目标,使用Redis快速解决在实际生产中的 ...

  5. Redis 常用命令 大全

    Redis 常用命令 发现几个很好的 Redis 常用命令汇总大全网页,分享给小伙伴们~ 1.Redis 命令参考 http://redisdoc.com/string/index.html 2.W3 ...

  6. redis常用命令大全

    1.基于内存的key-value数据库 2.基于c语言编写的,可以支持多种语言的api //set每秒11万次,取get 81000次 3.支持数据持久化 4.value可以是string,hash, ...

  7. Python之路【第十篇】Python操作Memcache、Redis、RabbitMQ、SQLAlchemy、

    Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...

  8. Python之路【第十篇】Python操作Memcache、Redis、RabbitMQ、SQLAlchemy

    Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...

  9. 文成小盆友python-num12 Redis发布与订阅补充,python操作rabbitMQ

    本篇主要内容: redis发布与订阅补充 python操作rabbitMQ 一,redis 发布与订阅补充 如下一个简单的监控模型,通过这个模式所有的收听者都能收听到一份数据. 用代码来实现一个red ...

随机推荐

  1. Opcode是啥以及如何使用好Opcache

    转载  https://www.zybuluo.com/phper/note/1016714 啥是Opcode? 我们在日常的PHP开发过程中,应该经常会听见Opcache这个词,那么啥是Opcode ...

  2. Discuz目录结构

    /source/class/task站点任务内置包 task_avatar.php头像类任务 task_blog.php发表日志任务 task_connect_bind.phpQQ 帐号绑定任务 ta ...

  3. html5-fieldset和legend和keygen元素的用法

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  4. codeforces 979C Kuro and Walking Route

    题意: 给出一棵树,其中有两个点,x和y,限制走了x之后的路径上不能有y,问可以走的路径(u,v)有多少条,(u,v)和(v,u)考虑为两条不同的路径. 思路: 简单树形dp,dfs统计在x到y路径( ...

  5. 使用commons-compress解压GBK格式winzip文件到UTF8,以及错误使用ZipArchiveInputStream读出来数据全是空的解决办法

    先上正确方法: 正确方式应该为,先创建一个ZipFile,然后对其entries做遍历,每一个entry其实就是一个文件或者文件夹,检测到文件夹的时候创建文件夹,其他情况创建文件,其中使用zipFil ...

  6. spring boot 概念

    最近新版本迭代,一直在弄框架替换和新技术实现的事儿. 本来想仔细介绍一下Spring Boot的各种东西,后来发现没啥写的,Spring Boot 说白了就是把你开发过程中用到的各种框架给你封装了一下 ...

  7. Robot Framework 自动化测试--部署篇

    一.产品介绍 Robot Framework是一个基于Python的,可扩展的关键字驱动的测试自动化框架.它是为了端 到端的验收测试(End-To-End Acceptance Test)以及验收测试 ...

  8. Numpy 通用函数

    frompyfunc的调用格式为frompyfunc(func, nin, nout),其中func是计算单个元素的函数,nin是此函数的输入参数的个数,nout是此函数的返回值的个数 # 注:用fr ...

  9. Django框架----logging配置

    我写Django项目常用的logging配置.(追加在setting.py文件中) LOGGING = { 'version': 1, 'disable_existing_loggers': Fals ...

  10. Java中this和super关键字

    今天练习到Java中的this和super关键字,我有如下总结: 1.子类继承父类,子类初始化对象,必须先调用父类构造方法,因为随时有可能要使用父类的成员变量. 2.get和set方法只是对成员变量进 ...