题意:

  给你一个数组,让你删除一个连续的子序列,使得剩下的序列中有最长上升子序列, 求出这个长度。

题解:

  预处理:先求一个last[i],以a[i]为开始的合法最长上升子序列的长度。再求一个pre[i],以a[i]为结尾的合法最长上升子序列长度。

  那么这题的答案就是:max(pre[j]) + last[i]。(j<=a[i] - 1)。

  例如a[i]为3的话, 答案就是max(以1结尾的LIS长度, 以2结尾的LIS长度) + 以3开始LIS长度。

  dis[i] 是 LIS 长度为i的时候,最小的a[i]。(详细请看LIS nlogn算法)

  所以

  len = (lower_bound(dis+1, dis+1+i, a[i]) - (dis+1)) + last[i]。//二分查找

  ans = max (ans, len);

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
//#define LOCAL
#define eps 0.0000001
typedef long long LL;
const int inf = 0x3f3f3f3f;
const LL INF = 0x7fffffff;
const int maxn = +;
const int mod = ;
int a[maxn];
int last[maxn];
int pre[maxn];
int dis[maxn];
void solve()
{
int n;
scanf("%d", &n);
for(int i=;i<=n;i++) scanf("%d", &a[i]);
ms(pre, );
ms(last, );
last[n] = ;
for(int i=n-;i>;i--){
if(a[i] < a[i+]){
last[i] = last[i+] + ;
}else last[i] = ;
}
pre[] = ;
for(int i= ;i<=n;i++){
if(a[i] > a[i-]){
pre[i] = pre[i-] + ;
}else pre[i] = ;
}
for(int i=;i<=n;i++) dis[i] = inf;
int ans = ;
for(int i=;i<=n;i++){
int len = (lower_bound(dis+, dis++i, a[i]) -(dis+))+ last[i];
ans = max(ans, len);
dis[pre[i]] = min(a[i], dis[pre[i]]);
}
printf("%d\n", ans);
}
int main() {
#ifdef LOCAL
freopen("jumping.in", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif // LOCAL
int t;
scanf("%d", &t);
while(t--){
solve();
}
return ;
}

Uva 1471 Defense Lines(LIS变形)的更多相关文章

  1. UVA - 1471 Defense Lines 树状数组/二分

                                  Defense Lines After the last war devastated your country, you - as the ...

  2. UVA 1471 Defense Lines 防线 (LIS变形)

    给一个长度为n的序列,要求删除一个连续子序列,使剩下的序列有一个长度最大的连续递增子序列. 最简单的想法是枚举起点j和终点i,然后数一数,分别向前或向后能延伸的最长长度,记为g(i)和f(i).可以先 ...

  3. UVA - 1471 Defense Lines (set/bit/lis)

    紫薯例题+1. 题意:给你一个长度为n(n<=200000)的序列a[n],求删除一个连续子序列后的可能的最长连续上升子序列的长度. 首先对序列进行分段,每一段连续的子序列的元素递增,设L[i] ...

  4. UVa 1471 Defense Lines - 线段树 - 离散化

    题意是说给一个序列,删掉其中一段连续的子序列(貌似可以为空),使得新的序列中最长的连续递增子序列最长. 网上似乎最多的做法是二分查找优化,然而不会,只会值域线段树和离散化... 先预处理出所有的点所能 ...

  5. uva 1471 Defense Lines

    题意: 给一个长度为n(n <= 200000) 的序列,你删除一段连续的子序列,使得剩下的序列拼接起来,有一个最长的连续递增子序列 分析: 就是最长上升子序列的变形.需要加一个类似二分搜索就好 ...

  6. UVa 1471 Defense Lines (二分+set优化)

    题意:给定一个序列,然后让你删除一段连续的序列,使得剩下的序列中连续递增子序列最长. 析:如果暴力枚举那么时间复杂度肯定受不了,我们可以先进行预处理,f[i] 表示以 i 结尾的连续最长序列,g[i] ...

  7. uva 1471 defence lines——yhx

    After the last war devastated your country, you - as the king of the land of Ardenia - decided it wa ...

  8. 1471 - Defense Lines

    After the last war devastated your country, you - as the king of the land of Ardenia - decided it wa ...

  9. UVA 437 巴比伦塔 【DAG上DP/LIS变形】

    [链接]:https://cn.vjudge.net/problem/UVA-437 [题意]:给你n个立方体,让你以长宽为底,一个个搭起来(下面的立方体的长和宽必须大于上面的长和宽)求能得到的最长高 ...

随机推荐

  1. SSM003/构建Maven单模块项目(二)

    一.Controller基础代码(mooc) 1.UserController.java /** *springmvc1-2:返回jsp页面 * 请求URL: /user/getUserById?us ...

  2. 将字符串转换成C#认可的对象(有键值对的对象)

    var resobj = Newtonsoft.Json.JsonConvert.DeserializeObject<Newtonsoft.Json.Linq.JArray>(result ...

  3. oracle--多表联合查询sql92版

    sql92学习 -查询员工姓名,工作,薪资,部门名称 sql的联合查询(多表查询) --1.sql92标准 ----笛卡尔积:一件事情的完成需要很多步骤,而不同的步骤有很多种方式,完成这件事情的所有方 ...

  4. winCE 获取路径信息

    最近在做一个SAP的winCE扫描枪项目,采用C#开发,不过在获取路径是采用了常用的System.IO.Directory.GetCurrentDirectory, 并不能使用:查询后了解到winCE ...

  5. 微信小程序 Mustache语法详解

    最近微信小程序非常火,对于前端开发的程序员是个利好的消息,这里主要记录下微信小程序  Mustache语法. 小程序开发的wxml里,用到了Mustache语法.所以,非常有必要把Mustache研究 ...

  6. jsp常问面试题集

    1.Servlet总结 在Java Web程序中,Servlet主要负责接收用户请求 HttpServletRequest,在doGet(),doPost()中做相应的处理,并将回应HttpServl ...

  7. React手稿之 React-Saga

    Redux-Saga redux-saga 是一个用于管理应用程序副作用(例如异步获取数据,访问浏览器缓存等)的javascript库,它的目标是让副作用管理更容易,执行更高效,测试更简单,处理故障更 ...

  8. 如何在nuxt中添加proxyTable代理

    背景 在本地开发vue项目的时候,当你习惯了proxyTable解决本地跨域的问题,切换到nuxt的时候,你会发现,添加了proxyTable设置并没有什么作用,那是因为你是用的vue脚手架生成的vu ...

  9. 27、前端知识点--webpack面试题(二)

    webpack面试题总结 本文主要是对webpack面试会常被问到的问题做一些总结,且文章会不断持续更新 1.webpack打包原理 把所有依赖打包成一个 bundle.js 文件,通过代码分割成单元 ...

  10. 事件对象e的实现原理

    转自:https://segmentfault.com/q/1010000007337410?_ea=1313467 事件对象传递原理 1.前置知识回顾 在讲传递原理前,我们先看看普通函数是如何传递参 ...