Description

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Input

输入文件的第一行包含两个整数 n和p,含义如上所述。

Output

输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。

Sample Input

20 23

Sample Output

16

HINT

100%的数据中,1 ≤ ��� N ≤ 106, P��� ≤ 10^9,p是一个质数。 数据有所加强

如图

把问题转化为

用1--n的数 组成一个完全二叉树使之满足小根堆性质的方案数

考虑dp

设i点的子结点数量为size[i]

则$dp[i]=C(s[i]-1,s[i*2])*f[i*2]*f[i*2+1]$

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
ll n,p;
ll dp[],size[],fac[];
ll qpow(ll a,ll b,ll mod)
{
ll res=;
a=a%mod;
while(b)
{
if(b&)res=(res*a)%mod;
b=b>>;
a=(a*a)%mod;
}
return res;
}
ll C(ll x,ll y,ll mod)
{
if(x<y)return ;
return fac[x]*qpow(fac[y],p-,p)%p*qpow(fac[x-y],p-,p)%p;
}
ll lucas(ll x,ll y,ll p)
{
if(!y)return ;
return C(x%p,y%p,p)*lucas(x/p,y/p,p)%p;
}
int main()
{
scanf("%lld%lld",&n,&p);
fac[]=fac[]=;
for(int i=;i<=n;i++)fac[i]=fac[i-]*i%p;
for(int i=n;i;i--)
{
size[i]=size[i<<]+size[i<<|]+;
dp[i]=lucas(size[i]-,size[i<<],p);
if(n>=(i<<))dp[i]=dp[i]*dp[i<<]%p;
if(n>=(i<<|))dp[i]=dp[i]*dp[i<<|]%p;
}
//for(int i=1;i<=n;i++)cout<<dp[i]<<endl;
cout<<dp[]<<endl;
return ;
}

[ZJOI2010]排列计数 题解的更多相关文章

  1. BZOJ2111:[ZJOI2010]排列计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...

  2. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  3. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  4. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  5. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  6. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  7. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  8. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  9. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

随机推荐

  1. printf 输出格式设置\033[47\033[5m 与-8.8s

    摘要:在使用linux终端命令的时候,我们可以看到像more命令,它的显示方式与一般的字符串不同,是用了反显.同样,linux C下printf还有很多其他不常见的格式化输出形式.本文主要为你盘点这些 ...

  2. 20175223 MySQL

    目录 完成结果 要求 1 :导入world.sql 要求 2 :CityWanna.java CityWanna.java 要求 3 :CountryWanna.java CountryWanna.j ...

  3. Android数字签名的学习(转)

    转载地址:http://www.cnblogs.com/feisky/archive/2010/01/17/1650076.html 在Android系统中,所有安装到系统的应用程序都必有一个数字证书 ...

  4. ARM 是什么

    ARM Advanced RISC Machines. RISC 就是reduced instruction set computer 精简指令集计算机DSP digtal signal Proces ...

  5. JS 常用字符串,数组操作

    JavaScript String/Array对象 JS String对象   String 对象属性 属性 描述 constructor 对创建该对象的函数的引用 length 字符串的长度 pro ...

  6. Windows 8.1 PLSQL_32连接到RHEL6.1 Oracle10gr2_64

    目录 目录 系统环境 连接Oracle Server 系统环境 操作系统 Windows 8.1 RHEL6.1 软件 Oracle10gr2 PL/SQL instantclient-basic-w ...

  7. datetime timestamp使用

    #coding=utf-8 import time import datetime def yes_time(): #获取当前时间 now_time = datetime.datetime.now() ...

  8. cannot find module node-sass

    解决方法: npm install --save-dev node-sass

  9. 21. Blog接口开发

    一般的系统由登录.增删改查所组成.我们的Blog同样如此.我们会开发登录.创建博客.删除博客.修改博客.查询博客等功能.话不多说,我们直接展开实践吧. 思路分析 创建项目.既然我们要创建一个blog, ...

  10. 2.3 Nginx服务的启停控制

    在Linux平台下,控制Nginx服务的启停有多种方法 2.3.1 Nginx服务的信号控制 在Nginx服务的启停办法中,有一类是通过信号机制来实现的,Nginx服务器的信号控制如下: Nginx服 ...