[ZJOI2010]排列计数 题解
Description
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值
Input
输入文件的第一行包含两个整数 n和p,含义如上所述。
Output
输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。
Sample Input
Sample Output
HINT
100%的数据中,1 ≤ ��� N ≤ 106, P��� ≤ 10^9,p是一个质数。 数据有所加强
如图
把问题转化为
用1--n的数 组成一个完全二叉树使之满足小根堆性质的方案数
考虑dp
设i点的子结点数量为size[i]
则$dp[i]=C(s[i]-1,s[i*2])*f[i*2]*f[i*2+1]$
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
ll n,p;
ll dp[],size[],fac[];
ll qpow(ll a,ll b,ll mod)
{
ll res=;
a=a%mod;
while(b)
{
if(b&)res=(res*a)%mod;
b=b>>;
a=(a*a)%mod;
}
return res;
}
ll C(ll x,ll y,ll mod)
{
if(x<y)return ;
return fac[x]*qpow(fac[y],p-,p)%p*qpow(fac[x-y],p-,p)%p;
}
ll lucas(ll x,ll y,ll p)
{
if(!y)return ;
return C(x%p,y%p,p)*lucas(x/p,y/p,p)%p;
}
int main()
{
scanf("%lld%lld",&n,&p);
fac[]=fac[]=;
for(int i=;i<=n;i++)fac[i]=fac[i-]*i%p;
for(int i=n;i;i--)
{
size[i]=size[i<<]+size[i<<|]+;
dp[i]=lucas(size[i]-,size[i<<],p);
if(n>=(i<<))dp[i]=dp[i]*dp[i<<]%p;
if(n>=(i<<|))dp[i]=dp[i]*dp[i<<|]%p;
}
//for(int i=1;i<=n;i++)cout<<dp[i]<<endl;
cout<<dp[]<<endl;
return ;
}
[ZJOI2010]排列计数 题解的更多相关文章
- BZOJ2111:[ZJOI2010]排列计数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...
- 【BZOJ2111】[ZJOI2010]排列计数(组合数学)
[BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- 洛谷 P4071 [SDOI2016]排列计数 题解
P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- ●洛谷P2606 [ZJOI2010]排列计数
题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...
- 洛谷P2606 [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
随机推荐
- uploadify的使用错误
在看singwa的视频教程中,学习使用hui-admin模版,在使用uploadify插件上传图片中出现错误. ReferenceError: Can't find variable: $因为使用JQ ...
- Django实现得步骤流程
我们利用django实现功能得时候,步骤和流程是怎样得呢? 一,首先要在Models中创建表. 1,在setting中找到DATABASE 中找到要使用得数据库,用mysql就把名字改了mysql. ...
- 2018icpc沈阳/gym101955 J How Much Memory Your Code Is Using? 签到
题意: 给你定义一堆变量,计算一下这些变量共占了多少k内存. 题解: 按题意模拟即可,善用ceil() // // Created by melon on 2019/10/22. // #includ ...
- Java 线程基础
Java 线程基础
- CSS样式初始化代码
CSS样式初始化代码 为什么要初始化CSS? 建站老手都知道,这是为了考虑到浏览器的兼容问题,其实不同浏览器对有些标签的默认值是不同的,如果没对CSS初始化往往会出现浏览器之间的页面差异.当然,初始化 ...
- 使用java读取excel数据
package excelOperation2; import java.io.File; import java.io.FileNotFoundException; import java.util ...
- 模板引擎的简单原理template
var templateStr = "我的名字叫<%=name%>我是一只小狗,今年<%=age%>岁."; var data = { name:'旺财 ...
- DB2连接
ibm_db.connect 创建非持久连接. ibm_db.pconnect 创建持久连接. 在最初的Python脚本请求之后,持久的连接保持打开状态,这允许后续的Python请求重新使用连接. 后 ...
- pip安装Scrapy因网络问题出错备选方案
一 更改pypi默认源 执行 pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple 执行pip instal ...
- Python之变量作用域
使用 global强制声明为全局变量