HDU6715 算术(莫比乌斯反演)
莫比乌斯反演的变形。
对 \(\mu(lcm(i,j))\) 变换,易得 \(\mu(lcm(i,j)) = \mu(i)\cdot\mu(j)\cdot \mu(gcd(i,j))\) 。那么有:
\sum_{i=1}^{n} \sum_{j=1}^{m} \mu(lcm(i,j)) &= \sum_{i=1}^{n}\mu(i) \sum_{j=1}^{m}\mu(j)\cdot \mu(gcd(i,j)) \\
&= \sum_{d=1}^{\min(n,m)}\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}\mu(id)\mu(jd)\mu(d)[gcd(i,j)=1]
\end{split}\]
由于莫比乌斯函数的性质 \(\sum_{d\ |\ n}\mu(d)=[n=1]\) ,我们有:
\text{上式} = \sum_{d=1}^{\min(n,m)}\sum_{d_1 = 1}^{\min(n,m)/d}\sum_{i=1}^{n/dd_1}\sum_{j=1}^{m/dd_1}\mu(idd_1)\mu(jdd_1)\mu(d)\mu(d_1)
\end{split}\]
我们令 \(T = dd_1\) ,有:
\]
令 \(f(T) = \sum_{d|T} \mu(d)\mu(T/d)\) 。
令 \(g(T,N,M)=\sum_{i=1}^{N}\sum_{j=1}^{M}\mu(iT)\mu(jT)=(\sum_{i=1}^{N}\mu(iT))\cdot(\sum_{j=1}^{M}\mu(jT))\) 。
那么我们有:
\]
\(g(T,n/T,m/T)\) 可以在 \(O(n/T+m/T)\) 的时间内计算。
时间复杂度为 \(O(n\log n)\) 。
#include<stdio.h>
#include<algorithm>
using namespace std;
const int maxn = 1000005;
int t, n, m, tot;
int mu[maxn], check[maxn], prime[maxn];
long long ans, f[maxn];
void init()
{
mu[1] = 1; tot = 0;
for(int i = 2; i <= 1000000; i++){
if(check[i] == 0){
mu[i] = -1;
prime[++tot] = i;
}
for(int j = 1; j <= tot && prime[j] * i <= 1000000; j++){
check[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -1 * mu[i];
}
}
for(int i = 1; i <= 1000000; i++){
for(int j = 1; j * i <= 1000000; j++){
f[i * j] += mu[i] * mu[j];
}
}
}
int main()
{
init();
for(scanf("%d", &t); t--;){
scanf("%d%d", &n, &m);
ans = 0;
for(int T = 1; T <= min(n, m); T++){
if(f[T]){
long long g1 = 0, g2 = 0;
for(int i = 1; i * T <= n; i++) g1 += mu[i * T];
for(int i = 1; i * T <= m; i++) g2 += mu[i * T];
ans += f[T] * g1 * g2;
}
}
printf("%lld\n", ans);
}
return 0;
}
HDU6715 算术(莫比乌斯反演)的更多相关文章
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 莫比乌斯函数筛法 & 莫比乌斯反演
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- POI2007_zap 莫比乌斯反演
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- CSU 1325 莫比乌斯反演
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...
随机推荐
- P2505 [HAOI2012]道路
传送门 统计每条边被最短路经过几次,点数不大,考虑计算以每个点为起点时对其他边的贡献 对于某个点 $S$ 为起点的贡献,首先跑一遍最短路,建出最短路的 $DAG$ 考虑 $DAG$ 上的某条边被以 $ ...
- P4556 [Vani有约会]雨天的尾巴(线段树合并+lca)
P4556 [Vani有约会]雨天的尾巴 每个操作拆成4个进行树上差分,动态开点线段树维护每个点的操作. 离线处理完向上合并就好了 luogu倍增lca被卡了5分.....于是用rmq维护.... 常 ...
- luogu P5329 [SNOI2019]字符串
传送门 显然要写一个排序,那只要考虑cmp函数怎么写就行了.第\(i\)个字符串和第 \(j\)个,首先前\(min(i,j)-1\)个字符是相同的,然后就是要比较后缀\(min(i,j)\)和\(m ...
- BrokenPipeError: [Errno 32] Broken pipe
运行Pytorch tutorial代码报错:BrokenPipeError: [Errno 32] Broken pipe 源代码地址: Training a classifier (CIFAR10 ...
- UITableViewCell选中后子View背景色被Clear
在TableView中,当cell 处于Hightlighted(高亮)或者Selected(选中)状态下,Cell上的子控件的背景颜色会被 Clear. 解决方法:(4种) 1. 直接设置子控件的 ...
- 数据库管理利器——Navicat Premium v12.1.25 下载和安装
目录 1. 按 2. 新功能 3. 安装 4. 激活 5. 下载地址 1. 按 Navicat Premium 是一套数据库管理工具,让你以单一程序同時连接到 MySQL.MariaDB.SQL Se ...
- linux Nginx 的安装
确保安装了 gcc,openssl-devel,pcre-devel,zilb-devel 下载官网:http://nginx.org/ [root@localhost tools]# wget ht ...
- python引用库异常总结
一.导入import pandas.io.data as web 时报了"The pandas.io.data module is moved to a separate package & ...
- [转载]转一篇Systemverilog的一个牛人总结
原文地址:转一篇Systemverilog的一个牛人总结作者:dreamylife Systemverilog 数据类型 l 合并数组和非合并数组 1)合并数组: 存储方式是连续的,中间没 ...
- Zabbix--01 介绍及安装
目录 一. 监控知识基本概述 1.为什么要使用监控 2.如何进行监控,比如我们需要监控磁盘的使用率 3.流行的监控工具 4.如果去到一家新公司,如何入手监控 二. 单机时代如何监控 三. zabbix ...