在这个问题中,您必须分析特定的排序算法----超快速排序。

该算法通过交换两个相邻的序列元素来处理n个不同整数的序列,直到序列按升序排序。

对于输入序列9 1 0 5 4,超快速排序生成输出0 1 4 5 9

您的任务是确定超快速排序需要执行多少交换操作才能对给定的输入序列进行排序。

输入格式

输入包括一些测试用例。

每个测试用例的第一行输入整数n,代表该用例中输入序列的长度。

接下来n行每行输入一个整数aiai,代表用例中输入序列的具体数据,第i行的数据代表序列中第i个数。

当输入用例中包含的输入序列长度为0时,输入终止,该序列无需处理。

输出格式

对于每个需要处理的输入序列,输出一个整数op,代表对给定输入序列进行排序所需的最小交换操作数,每个整数占一行。

数据范围

0≤N<5000000≤N<500000,
0≤ai≤9999999990≤ai≤999999999

输入样例:

5
9
1
0
5
4
3
1
2
3
0

输出样例:

6
0

算法:归并排序 + 逆序对 or 树状数组

题解:求最少的交换次数,其实就是求当前这个序列的逆序数。

归并排序 + 逆序对:

#include <iostream>
#include <cstdio> using namespace std; typedef long long ll; const int maxn = 5e5+; ll arr[maxn], b[maxn];
ll ans; void merge_sort(ll *arr, int l, int mid, int r) {
int i = l, j = mid + ;
int k = ;
while(i <= mid || j <= r) {
if(j > r || (i <= mid && arr[i] <= arr[j])) {
b[k++] = arr[i++];
} else {
ans += mid - i + ;
b[k++] = arr[j++];
}
}
for(int i = ; i < k; i++) {
arr[l + i] = b[i];
}
} void merge(ll *arr, int l, int r) {
if(l < r) {
int mid = (l + r) >> ;
merge(arr, l, mid);
merge(arr, mid + , r);
merge_sort(arr, l, mid, r);
}
} int main() {
int n;
while(scanf("%d", &n) && n) {
for(int i = ; i <= n; i++) {
scanf("%lld", &arr[i]);
}
ans = ;
merge(arr, , n);
cout << ans << endl;
}
return ;
}

树状数组:

#include <iostream>
#include <cstdio>
#include <memory.h>
#include <vector>
#include <algorithm> using namespace std; typedef long long ll; const int maxn = 5e5+; vector<int> v; int arr[maxn];
ll tree[maxn << ];
int size; int lowbit(int x) {
return x & (-x);
} int find(int x) {
return lower_bound(v.begin(), v.end(), x) - v.begin() + ;
} void update(int x, int val) {
while(x <= size) {
tree[x] += val;
x += lowbit(x);
}
} ll getSum(int x) { //求出前面有多少个小于或等于x的数
ll res = ;
while(x > ) {
res += tree[x];
x -= lowbit(x);
}
return res;
} int main() {
int n;
while(scanf("%d", &n) && n) {
memset(tree, , sizeof tree);
for(int i = ; i <= n; i++) {
scanf("%d", &arr[i]);
v.push_back(arr[i]);
}
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
size = v.size();
ll ans = ;
for(int i = ; i <= n; i++) {
update(find(arr[i]), );
ans += i - getSum(find(arr[i])); //用总数减去小于或等于arr[i]的数,就是当前这个数的逆序数
}
cout << ans << endl;
}
return ;
}

AcWing 107. 超快速排序(归并排序 + 逆序对 or 树状数组)的更多相关文章

  1. Day2:T4求逆序对(树状数组+归并排序)

    T4: 求逆序对 A[I]为前缀和 推导 (A[J]-A[I])/(J-I)>=M A[j]-A[I]>=M(J-I) A[J]-M*J>=A[I]-M*I 设B[]=A[]-M*( ...

  2. hdu 4911 求逆序对数+树状数组

    http://acm.hdu.edu.cn/showproblem.php?pid=4911 给定一个序列,有k次机会交换相邻两个位置的数,问说最后序列的逆序对数最少为多少. 实际上每交换一次能且只能 ...

  3. 【BZOJ 3295】动态逆序对 - 分块+树状数组

    题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...

  4. Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2886  Solved: 924[Submit][Stat ...

  5. bzoj1831 逆序对 (dp+树状数组)

    注意到,所有的-1应该是一个不降的序列,否则不会更优那就先求出来不是-1的的逆序对个数,然后设f[i][j]表示第i个-1放成j的前i个-1带来的最小逆序对数量这个可以树状数组来求 #include& ...

  6. P3157 [CQOI2011]动态逆序对(树状数组套线段树)

    P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...

  7. POJ2299逆序对模板(树状数组)

    题目:http://poj.org/problem?id=2299 只能相邻两个交换,所以交换一次只会减少一个逆序对.所以交换次数就是逆序对数. ps:原来树状数组还可以记录后边lowbit位的部分和 ...

  8. 【Luogu】P3157动态逆序对(树状数组套主席树)

    题目链接 md第一道在NOILinux 下用vim做的紫题.由于我对这个操作系统不是很熟悉,似乎有什么地方搞错了,md调死.(我还打了两遍代码,调了两个小时) 但是这道题并不难,就是树状数组套上主席树 ...

  9. BZOJ3295 动态逆序对(树状数组套线段树)

    [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 6058  Solved: 2117[Submit][Status][D ...

随机推荐

  1. 面试35-删除字符串重复字符-删除出现在第二个字符串中的字符-第一个只出现一次的字符-hash表计数

    #include<iostream>#include<algorithm>#include<functional>using namespace std;char ...

  2. linux小白家教学<一>

    <数据中心规划与实施> 教学大纲  编写人:Allen 一. 课程教学内容及目标: (一) 知识目标 1.掌握企业级LINUX部署以及相关配置: 2.掌握LINUX操作系统基本的创建.删除 ...

  3. spark教程(七)-文件读取案例

    sparkSession 读取 csv 1. 利用 sparkSession 作为 spark 切入点 2. 读取 单个 csv 和 多个 csv from pyspark.sql import Sp ...

  4. js数据结构-链表

    链表和数组 大家都用过js中的数组,数组其实是一种线性表的顺序存储结构,它的特点是用一组地址连续的存储单元依次存储数据元素.而它的缺点也正是其特点而造成,比如对数组做删除或者插入的时候,可能需要移动大 ...

  5. linux 下如何将网页版应用生成桌面图标

    使用linux mint已经两年了,很多国民应用,都没有Linux版,但是这些应用都有网页版,今天就说下最简单的将网页应用变成桌面应用,无需配置,安装任何插件.以微信为例; 首先,在谷歌浏览器打开网页 ...

  6. Java continue 、break、标签

    任何迭代语句的主体部分都可以用break和continue控制循环流程,其中break用于强行退出循环,不执行循环中剩余的语句, 而continue则停止当前的迭代,然后退回循环起始处,开始下一次迭代 ...

  7. sql server isnull函数

    isnull函数 --ISNULL() 函数用于规定如何处理 NULL 值 语法:SELECT ISNULL(check_expression, replacement_value) --check_ ...

  8. 07 Python爬虫验证码处理

    大部分门户网站在进行登录的时候,如果用户连续登录的次数超过3次或者5次的时候,就会在登录页中动态生成验证码.通过验证码达到分流和反爬的效果. 一. 云打码平台处理验证码的流程: 1.对携带验证码的页面 ...

  9. vue-cli常用配置

    官方配置表:https://cli.vuejs.org/zh/config/#publicpath 1.vue inspect > output.js 将配置按webpack.config.js ...

  10. se37 函数中的异常使用

    一种是rase <exceptions> FUNCTION ztest. *"-------------------------------------------------- ...