BZOJ 1767] [Ceoi2009] harbingers (斜率优化)
[BZOJ 1767] [Ceoi2009] harbingers (斜率优化)
题面
给定一颗树,树中每个结点有一个邮递员,每个邮递员要沿着唯一的路径走向capital(1号结点),每到一个城市他可以有两种选择:
1.继续走到下个城市
2.让这个城市的邮递员替他出发
每个邮递员出发需要一个准备时间W[I],他们的速度是V[I],表示走一公里需要多少分钟。 现在要你求出每个城市的邮递员到capital的最少时间(不一定是他自己到capital,可以是别人帮他)
分析
dp方程很好推,设dp[x]表示x到1的最少时间,dist[x]表示x到1的距离
\(dp[x]=max(dp[f]+(dist[x]-dist[f]) \times v[x]+w[x])\),f为x到1路径上的节点
变形一下就是\(dp[f]=v[x] \times dist[f] +dp[x]-dist[x] \times v[x]-w[x]\)
可以看成坐标系里的点\((dist[f],dp[x])\),用斜率为\(v[x]\)的直线去截,最小化截距\(dp[x]-dist[x] \times v[x]-w[x]\),直接维护斜率单调递增的下凸壳即可
但是有两个问题:
1.斜率v[x]不单调,不弹出队头,直接在凸壳上二分,找到第一个斜率>v[x]的位置即可
2.回溯的时候要删除队列中的x,并把插入的时候弹出的数插回去。直接暴力修改总复杂度是\(O(n^2)\)的。我们发现弹出再插回其实没有必要,直接改变tail即可。那么我们记录下插入前的tail,二分找到x插入的位置pos,记录pos原来的值,然后修改pos。回溯的时候改回来即可
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#define maxn 100000
using namespace std;
typedef long long ll;
int n;
struct edge{
int from;
int to;
ll len;
int next;
}E[maxn*2+5];
int sz=1;
int ehead[maxn+5];
void add_edge(int u,int v,ll w){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].len=w;
E[sz].next=ehead[u];
ehead[u]=sz;
}
int top=0;
int deep[maxn+5];
ll dist[maxn+5];
int stk[maxn+5];
void dfs1(int x,int fa){
deep[x]=deep[fa]+1;
for(int i=ehead[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa){
dist[y]=dist[x]+E[i].len;
dfs1(y,x);
}
}
}
ll dp[maxn+5];
ll w[maxn+5];
ll v[maxn+5];
int head,tail;
int q[maxn+5];
inline double get_up(int j,int k){
return dp[k]-dp[j];
}
inline double get_down(int j,int k){
return dist[k]-dist[j];
}
int bin_search1(int l,int r,double k){//找转移位置
int ans=r;
int mid;
while(l<=r){
mid=(l+r)>>1;
if(get_up(q[mid],q[mid+1])/get_down(q[mid],q[mid+1])>=k){
ans=mid;
r=mid-1;
}else l=mid+1;
}
return ans;
}
int bin_search2(int l,int r,int i){
int ans=r+1;
if(r-l+1<=1) return r+1;
int mid;
while(l<=r){
mid=(l+r)>>1;
if(get_up(q[mid-1],q[mid])/get_down(q[mid-1],q[mid])>get_up(q[mid],i)/get_down(q[mid],i)){
ans=mid;
r=mid-1;
}else l=mid+1;
}
return ans;
}
void dfs2(int x,int fa){
int pos1=q[bin_search1(head,tail,v[x])];
if(x!=1) dp[x]=dp[pos1]+w[x]+v[x]*(dist[x]-dist[pos1]);
// printf("best=%d dp[%d]=%lld\n",pos1,x,dp[x]);
int pos2=bin_search2(head,tail,x);
int tmp_tail=tail,tmp_qpos2=q[pos2];
q[pos2]=x;
tail=pos2;
for(int i=ehead[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa){
dfs2(y,x);
}
}
q[pos2]=tmp_qpos2;
tail=tmp_tail;
}
int main(){
// freopen("10.in","r",stdin);
// freopen("10.ans","w",stdout);
int aa,bb;
long long cc;
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d %d %lld",&aa,&bb,&cc);
add_edge(aa,bb,cc);
add_edge(bb,aa,cc);
}
for(int i=2;i<=n;i++){
scanf("%lld %lld",&w[i],&v[i]);
}
dfs1(1,0);
memset(dp,0x3f,sizeof(dp));
dp[1]=0;
head=1,tail=0;
dfs2(1,0);
for(int i=2;i<=n;i++){
printf("%lld ",dp[i]);
}
}
BZOJ 1767] [Ceoi2009] harbingers (斜率优化)的更多相关文章
- bzoj1767[Ceoi2009]harbingers 斜率优化dp
1767: [Ceoi2009]harbingers Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 421 Solved: 112[Submit][S ...
- ●BZOJ 1767 [Ceoi2009]harbingers
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1767 题解: 斜率优化DP,单调栈,二分 定义 DP[i] 表示从 i 节点出发,到达根所花 ...
- BZOJ1767/Gym207383I CEOI2009 Harbingers 斜率优化、可持久化单调栈、二分
传送门--BZOJCH 传送门--VJ 注:本题在BZOJ上是权限题,在Gym里面也不能直接看,所以只能在VJ上交了-- 不难考虑到这是一个\(dp\). 设\(dep_x\)表示\(x\)在树上的带 ...
- bzoj 1767: [Ceoi2009]harbingers
Description 给定一颗树,树中每个结点有一个邮递员,每个邮递员要沿着唯一的路径走向capital(1号结点),每到一个城市他可以有两种选择: 1.继续走到下个城市 2.让这个城市的邮递员替他 ...
- HDU 3824/ BZOJ 3963 [WF2011]MachineWorks (斜率优化DP+CDQ分治维护凸包)
题面 BZOJ传送门(中文题面但是权限题) HDU传送门(英文题面) 分析 定义f[i]f[i]f[i]表示在iii时间(离散化之后)卖出手上的机器的最大收益.转移方程式比较好写f[i]=max{f[ ...
- BZOJ 3156: 防御准备( dp + 斜率优化 )
dp(i)表示处理完[i,n]且i是放守卫塔的最小费用. dp(i) = min{dp(j) + (j-i)(j-i-1)/2}+costi(i<j≤N) 然后斜率优化 ------------ ...
- BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]
4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...
- BZOJ 1597 土地购买(斜率优化DP)
如果有一块土地的长和宽都小于另一块土地的长和宽,显然这块土地属于“赠送土地”. 我们可以排序一下将这些赠送土地全部忽略掉,一定不会影响到答案. 那么剩下的土地就是长递减,宽递增的.令dp[i]表示购买 ...
- bzoj 4709 [ Jsoi2011 ] 柠檬 —— 斜率优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GX ...
随机推荐
- 【LuoguP4916】魔力环
题目链接 题意 求出 \(n\) 个珠子的在旋转同构意义下的手 环 个数,满足以下条件: 恰好有 \(m\) 个黑色珠子,其余为白色. 黑色珠子形成的最长连续段不能超过 \(k\) 个. Sol 考虑 ...
- 【leetcode】1146. Snapshot Array
题目如下: Implement a SnapshotArray that supports the following interface: SnapshotArray(int length) ini ...
- 【JavaScript】包装类
包装类 String().Number().Boolean() String() 可以将基本数据类型的字符串转换为String对象 var string = new String("hell ...
- 【微信小程序】基础组件--view text image
组件的通用属性: id class style hidden bind* catch* data-* view 小程序基础组件,基本等于最常用组件,类似于HTML中的div.view用于构建页面骨架, ...
- Linux文件及目录查找
Linux文件及目录查找 一which——显示命令的完整路径 [root@centos71 ~]# which ls alias ls='ls --color=auto' /usr/bin/ls [r ...
- Java使用google身份验证器实现动态口令验证
参考: 1)https://www.jb51.net/article/121243.htm 2)https://www.cnblogs.com/wuaili/p/9810661.html
- [CF1093E]Intersection of Permutations:树套树+pbds
分析 裸的二维数点,博主用树状数组套平衡树写的,顺便pbds真好用. Update on 2018/12/20:再解释一下为什么是二维数点,第一维是\(la \leq i \leq ra\),第二维是 ...
- package.json保存
# 确保已经进入项目目录 # 确定已经有 package.json,没有就通过 npm init # 创建,直接一路回车就好,后面再来详细说里面的内容. # 安装 webpack 依赖 npm ins ...
- electron原来这么简单----打包你的react、VUE桌面应用程序
也许你不甘心只写网页,被人叫做"他会写网页",也许你有项目需求,必须写桌面应用,然而你只会前端,没关系.网上的教程很多,但是很少有能说的浅显易懂的,我尽力将electron打包应用 ...
- HTML转换PDF及SWF及图片
一.源码特点 在一些应用场景中,出于某些目的(例如需要对文章内容进行保护,禁止用户真接复制文字内容),不能直接提供HTML的方式进行浏览,那么就需要将文章内容转换为其它的格式如PDF.图 ...