es之得分(加权)
随着应用程序的增长,提高搜索质量的需求也进一步增大。我们把它叫做搜索体验。我们需要知道什么对用户更重要,关注用户如何使用搜索功能。这导致不同的结论,例如,有些文档比其他的更重要,或特定查询需强调一个字段而弱化其他字段。这就是可以用到加权的地方。
进一步说搜索体验,我们更希望检索出来的数据是最想得到的数据;
这个其实就是关于文档的【相关性得分】
进一步细节说:我们查询的所有文档,会在内部做一次相关性的评分score;然后会根据这个score从大到小的排序,依次展示给客户端;
如何计算评分?
Elasticsearch使用的计算评分公式TF-IDF算法的实用计算公式如下:
score(q,d) coord(q,d)queryNorm(q)(tf (tind)idf (t)2 boost(t)norm(t,d))
TF:词频,词在文档中出现的频度是多少? 频度越高,权重 越高
IDF:逆向文档率,词在集合所有文档里出现的频率是多少?频次越高,权重 越低
在我们实际的工作中,我们经常会控制boost来调整score(boost默认值是1)
创建索引和映射:
1):创建索引
@Test
public void createIndex(){
/**
* 创建索引
* */
client.admin().indices().prepareCreate("blog").get();
}
2):创建映射
/**
* 创建映射
*/
@Test
public void testCreateIndexMapping_boost() throws Exception{
/**
* 格式:
* "mappings" : {
* "document" : {
* "dynamic" : "false",
* "properties" :{
* "id" : { "type" : "string" },
* "content" : { "type" : "string" },
* "comment" : {"type" : "string"},
* "author" : { "type" : "string" }
* }
* }
* }
*/
//构建json的数据格式,创建映射
XContentBuilder mappingBuilder = XContentFactory.jsonBuilder()
.startObject()
.startObject("document")
.startObject("properties")
.startObject("id").field("type","integer").field("store", "yes")
.endObject()
.startObject("title").field("type","string").field("store", "yes").field("analyzer" , "ik_max_word")
.endObject()
.startObject("content").field("type","string").field("store", "yes").field("analyzer" , "ik_max_word")
.endObject()
.startObject("comment").field("type","string").field("store", "yes").field("analyzer" , "ik_max_word")
.endObject()
.endObject()
.endObject()
.endObject();
PutMappingRequest request = Requests.putMappingRequest("blog")
.type("document")
.source(mappingBuilder);
client.admin().indices().putMapping(request).get();
}
3):创建Document实体类
package com.elasticsearch.bean;
/**
* Created by angel;
*/
public class Document {
private Integer id;
private String title;
private String content;
private String comment;
public Integer getId() {
return id;
}
public String getComment() {
return comment;
}
public String getContent() {
return content;
}
public String getTitle() {
return title;
}
public void setComment(String comment) {
this.comment = comment;
}
public void setContent(String content) {
this.content = content;
}
public void setId(Integer id) {
this.id = id;
}
public void setTitle(String title) {
this.title = title;
}
}
4):重新创建索引和映射,创建文档
/**
* 创建文档
* */
@Test
public void createDocument() throws JsonProcessingException {
Document document = new Document();
// document.setId(1);
// document.setTitle("搜索引擎服务器");
// document.setContent("基于restful的数据风格");
// document.setComment("我们学习Elasticsearch搜索引擎服务器");
//
// document.setId(2);
// document.setTitle("什么是Elasticsearch");
// document.setContent("Elasticsearch搜索引擎服务器");
// document.setComment("Elasticsearch封装了lucene");
//
document.setId(3);
document.setTitle("Elasticsearch的用途");
document.setContent("Elasticsearch可以用来进行海量数据的检索");
document.setComment("Elasticsearch真NB");
ObjectMapper objectMapper = new ObjectMapper();
String source = objectMapper.writeValueAsString(document);
System.out.println("source:"+source);
IndexResponse indexResponse = client.prepareIndex("blog", "document", document.getId().toString()).setSource(source).get();
// 获取响应的信息
System.out.println("索引名称:"+indexResponse.getIndex());
System.out.println("文档类型:"+indexResponse.getType());
System.out.println("ID:"+indexResponse.getId());
System.out.println("版本:"+indexResponse.getVersion());
System.out.println("是否创建成功:"+indexResponse.status());
client.close();
}
5):测试:
//TODO 如何让id2 在 id1前面
@Test
public void BoolQuery_boost(){
SearchResponse searchResponse = client.prepareSearch("blog").setTypes("document")
.setQuery(QueryBuilders.boolQuery()
.should(QueryBuilders.termQuery("title" , "搜索"))
.should(QueryBuilders.termQuery("content" , "搜索"))
.should(QueryBuilders.termQuery("comment" , "搜索"))
).get();
SearchHits hits = searchResponse.getHits();//获取数据的结果集对象,获取命中次数
// 显示数据
printSearch(hits);
}
public void printSearch(SearchHits hits){
System.out.println("查询的结果数量有"+hits.getTotalHits()+"条");
System.out.println("结果中最高分:"+hits.getMaxScore());
// 遍历每条数据
Iterator<SearchHit> iterator = hits.iterator();
while(iterator.hasNext()){
SearchHit searchHit = iterator.next();
System.out.println("所有的数据JSON的数据格式:"+searchHit.getSourceAsString());
System.out.println("每条得分:"+searchHit.getScore());
// 获取每个字段的数据
System.out.println("id:"+searchHit.getSource().get("id"));
System.out.println("title:"+searchHit.getSource().get("title"));
System.out.println("content:"+searchHit.getSource().get("content"));
System.out.println("**********************************************");
for(Iterator<SearchHitField> ite = searchHit.iterator(); ite.hasNext();){
SearchHitField next = ite.next();
System.out.println(next.getValues());
}
}
}
es之得分(加权)的更多相关文章
- Elasticsearch--更好的搜索_加权得分,脚本,同义词
目录 Apache Lucene评分 Elasticsearch的脚本功能 脚本执行过程中可以使用的对象 使用自定义的脚本库 搜索不同语言的内容 使用加权影响得分 加权 function_score查 ...
- Paper | Blind Quality Assessment Based on Pseudo-Reference Image
目录 1. 技术细节 1.1 失真识别 1.2 得到对应的PRI并评估质量 块效应 模糊和噪声 1.3 扩展为通用的质量评价指标--BPRI 归一化3种质量评分 判断失真类型 加权求和 2. 总结 这 ...
- 因果推理综述——《A Survey on Causal Inference》一文的总结和梳理
因果推理 本文档是对<A Survey on Causal Inference>一文的总结和梳理. 论文地址 简介 关联与因果 先有的鸡,还是先有的蛋?这里研究的是因果关系,因果关系与普通 ...
- C#如何使用ES
Elasticsearch简介 Elasticsearch (ES)是一个基于 Lucene 的开源搜索引擎,它不但稳定.可靠.快速,而且也具有良好的水平扩展能力,是专门为分布式环境设计的. Elas ...
- C# 如何使用 Elasticsearch (ES)
Elasticsearch简介 Elasticsearch (ES)是一个基于Apache Lucene(TM)的开源搜索引擎,无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进.性能最好 ...
- C#使用ES
C#如何使用ES Elasticsearch简介 Elasticsearch (ES)是一个基于Apache Lucene(TM)的开源搜索引擎,无论在开源还是专有领域,Lucene可以被认为是迄今为 ...
- ES相关信息
漫画版原理介绍 搜索引擎的核心:倒排索引 elasticsearch 基于Lucene的,封装成一个restful的api,通过api就可进行操作(Lucene是一个apache开放源代码的全文检索引 ...
- #研发解决方案介绍#基于ES的搜索+筛选+排序解决方案
郑昀 基于胡耀华和王超的设计文档 最后更新于2014/12/3 关键词:ElasticSearch.Lucene.solr.搜索.facet.高可用.可伸缩.mongodb.SearchHub.商品中 ...
- ES搜索引擎-简单入门
基本概念: 索引Index es吧数据放到一个或者多个索引中,如果用关系型数据库模型对比,索引的地位与数据库实例(db)相当.索引存放和读取的基本单元是文档(document).es内部使用的是apa ...
随机推荐
- linux最强编辑神器vim常用命令大全:编辑、插入、删除、替换、保存...
我说vim是编辑器之神大家没有意见吧 下面分享一些vim常用命令,大家可以收藏一下 进入vim: vim配置: vim中光标移动: vim中屏幕滚动: vim中插入文本类: 文本替换: 格式 : 范 ...
- P2672跳石头
这是2015noip的一道二分答案的题目,看了题解才会,, 题目给出石头的位置并且让你踩着石头往前跳,最多删掉m个石头还可以顺利通过,求解最短跳跃距离的最大值. 那么二分什么呢:mid为跳跃的长度.那 ...
- python常量 (最全常量解析)
常量 一.常量 变量是变化的量,常量则是不变的量.python中没有使用语法强制定义常量,也就是说,python中定义常量本质上就是变量.如果非要定义常量,变量名必须全大写. AGE_OF_NICK ...
- Structs2下的MyFirstTest
1.这是<Struts2-权威指南>第二章的例子 2.博文主要说明在eclipse下如何创建一个struts2项目 3.实现功能:在login.jsp输入用户名和密码,若用户名为scott ...
- DOM属性和事件
1-22 DOM属性设置与获取 1.获取属性: getAttribute("attribute"): var p = document.getElementById(" ...
- 计算视图相对坐标时convertPoint:toView: ,UIApplication sharedApplication - keyWindow is nil?
UIWindow *window = [UIApplication sharedApplication].keyWindow; window 为nil的原因:在指定rootViewController ...
- MySQL使用explain时各字段解释
1.id select查询的序列号,包含一组数字,表示查询中执行select子句或操作表的顺序 三种情况: (1)id相同,执行顺序由上至下 id相同,执行顺序由上至下 此例中 先执行where 后的 ...
- CodeBlocks17.12+汉化包下载及用法
本文已迁移至:https://blog.csdn.net/COCO56/article/details/95228780
- MIT-线性代数公开课
本博客是学习MIT-线性代数笔记,Gilbert Strang大神讲的通俗易懂,感兴趣的可以观看视频 其中习题集请点击 01)方程组的几何解释 02)矩阵消元 03)乘法和逆矩阵 04)A的LU分解 ...
- FPGA 物理时序不合理的体现(体现方式:数字钟的行扫描和列扫描)
本人在这只讨论建模好的模块来比较解释现象,如有不周到请大家指正. 软件功能仿真和在硬件上的区别:可以从这个数码管的行扫描和列扫描实例来体会一下,物理时序的影响和改进方法. 数码管的行扫描.列扫描要求同 ...