GAN目前是机器学习中非常受欢迎的研究方向。主要包括有两种类型的研究,一种是将GAN用于有趣的问题,另一种是试图增加GAN的模型稳定性。

事实上,稳定性在GAN训练中是非常重要的。起初的GAN模型在训练中存在一些问题,e.g., 模式塌陷生成器演化成非常窄的分布,只覆盖数据分布中的单一模式)。模式塌陷的含义是发生器只能产生非常相似的样本(例如MNIST中的单个数字),即所产生的样本不是多样的。这当然违反了GAN初衷

GAN中的另一个问题是没有指很好的指标或度量说明模型的收敛性生成器鉴别器损失并没有告诉我们关于这方面的任何信息。当然,我们可以通过查看生成器产生的数据来监控训练过程。但是,这是一个愚蠢的手动过程。所以,我们需要一个可解释指标告诉我们训练过程的好坏。

Wasserstein GAN

Wasserstein GAN(WGAN)是一种新提出的GAN算法,可以在一定程度解决上述两个问题。对于WGAN背后的直觉和理论背景,可以查看相关资料

整个算法的伪代码如下:

我们可以看到该算法与原始GAN算法非常相似。 但是,对于WGAN,我们根据上面的代码需要注意到下几点:
  1. 损失函数中没有log。判别器D(X)的输出不再是一个概率(标量),同时也就意味着没有sigmoid激活函数
  2. 对于判别器D(X)的权重W进行裁剪
  3. 训练判别器的次数生成器
  4. 采用RMSProp优化器,代替原先的ADAM优化器
  5. 非常低的learning rate, α=0.00005

WGAN TensorFlow implementation

GAN的基本实现可以在上一篇文章中介绍过。 我们只需要稍微修改下传统的GAN。 首先,让我们更新我们的判别器D(X)

""" Vanilla GAN """
def discriminator(x):
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
out = tf.matmul(D_h1, D_W2) + D_b2
return tf.nn.sigmoid(out) """ WGAN """
def discriminator(x):
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
out = tf.matmul(D_h1, D_W2) + D_b2
return out

接下来,修改loss函数,去掉log

""" Vanilla GAN """
D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake))
G_loss = -tf.reduce_mean(tf.log(D_fake)) """ WGAN """
D_loss = tf.reduce_mean(D_real) - tf.reduce_mean(D_fake)
G_loss = -tf.reduce_mean(D_fake)

在每次梯度下降更新后,裁剪判别器D(X)的权重:

# theta_D is list of D's params
clip_D = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in theta_D]

然后,只需要训练更多次的判别器D(X)就行了

D_solver = (tf.train.RMSPropOptimizer(learning_rate=5e-5)
.minimize(-D_loss, var_list=theta_D))
G_solver = (tf.train.RMSPropOptimizer(learning_rate=5e-5)
.minimize(G_loss, var_list=theta_G)) for it in range(1000000):
for _ in range(5):
X_mb, _ = mnist.train.next_batch(mb_size) _, D_loss_curr, _ = sess.run([D_solver, D_loss, clip_D], feed_dict={X: X_mb, z: sample_z(mb_size, z_dim)}) _, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={z: sample_z(mb_size, z_dim)})

Conditional GAN

这里顺便简短的介绍下CGAN

只需要在判别器D(X)和生成器G(Z)中的输入层额外拼接上向量y就可以了

额外的输入y

y = tf.placeholder(tf.float32, shape=[None, y_dim])

再将它加入到判别器D(X)和生成器G(Z)中:

def generator(z, y):
# Concatenate z and y
inputs = tf.concat(concat_dim=1, values=[z, y]) G_h1 = tf.nn.relu(tf.matmul(inputs, G_W1) + G_b1)
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
G_prob = tf.nn.sigmoid(G_log_prob) return G_prob def discriminator(x, y):
# Concatenate x and y
inputs = tf.concat(concat_dim=1, values=[x, y]) D_h1 = tf.nn.relu(tf.matmul(inputs, D_W1) + D_b1)
D_logit = tf.matmul(D_h1, D_W2) + D_b2
D_prob = tf.nn.sigmoid(D_logit) return D_prob, D_logit

改变权重的维数:

# Modify input to hidden weights for discriminator
D_W1 = tf.Variable(shape=[X_dim + y_dim, h_dim])) # Modify input to hidden weights for generator
G_W1 = tf.Variable(shape=[Z_dim + y_dim, h_dim]))

构建新的网络:

# Add additional parameter y into all networks
G_sample = generator(Z, y)
D_real, D_logit_real = discriminator(X, y)
D_fake, D_logit_fake = discriminator(G_sample, y)

训练时,额外加入y即可:

X_mb, y_mb = mnist.train.next_batch(mb_size)

Z_sample = sample_Z(mb_size, Z_dim)
_, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Z: Z_sample, y:y_mb})
_, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: Z_sample, y:y_mb})

接下来进行生成器验证的时候,可以固定y的值:

n_sample = 16
Z_sample = sample_Z(n_sample, Z_dim) # Create conditional one-hot vector, with index 5 = 1
y_sample = np.zeros(shape=[n_sample, y_dim])
y_sample[:, 7] = 1 samples = sess.run(G_sample, feed_dict={Z: Z_sample, y:y_sample})

PS:用下面的loss函数,收敛特别快,效果会更加好。

D_loss_real=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real,labels=tf.ones_like(D_real)))
D_loss_fake=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake,labels=tf.zeros_like(D_fake)))
D_loss=D_loss_real+D_loss_fake
G_loss=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake,labels=tf.ones_like(D_fake)))

Wasserstein Generative Adversarial Nets (WGAN ) and CGAN的更多相关文章

  1. Generative Adversarial Nets[Wasserstein GAN]

    本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...

  2. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  3. Generative Adversarial Nets[BEGAN]

    本文来自<BEGAN: Boundary Equilibrium Generative Adversarial Networks>,时间线为2017年3月.是google的工作. 作者提出 ...

  4. Generative Adversarial Nets[Pre-WGAN]

    本文来自<towards principled methods for training generative adversarial networks>,时间线为2017年1月,第一作者 ...

  5. (转)Deep Learning Research Review Week 1: Generative Adversarial Nets

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...

  6. Generative Adversarial Nets[pix2pix]

    本文来自<Image-to-Image Translation with Conditional Adversarial Networks>,是Phillip Isola与朱俊彦等人的作品 ...

  7. Generative Adversarial Nets(原生GAN学习)

    学习总结于国立台湾大学 :李宏毅老师 Author: Ian Goodfellow • Paper: https://arxiv.org/abs/1701.00160 • Video: https:/ ...

  8. GAN(Generative Adversarial Nets)的发展

    GAN(Generative Adversarial Nets),产生式对抗网络 存在问题: 1.无法表示数据分布 2.速度慢 3.resolution太小,大了无语义信息 4.无reference ...

  9. 论文笔记之:Conditional Generative Adversarial Nets

    Conditional Generative Adversarial Nets arXiv 2014   本文是 GANs 的拓展,在产生 和 判别时,考虑到额外的条件 y,以进行更加"激烈 ...

随机推荐

  1. 全面解读php-运算符

    一.运算符的优先级 二.短路作用 本文为袋鼠学习中的总结,如有转载请注明出处:https://www.cnblogs.com/chrdai/p/11074776.html

  2. pip安装selenium时,报错“You are using pip version 10.0.1, however version 18.0 is available.”的问题

    pip安装selenium,pip install selenium 类型这样错误 1  原因可能不是以管理员身份运行cmd安装selenium 2  解决方式 也是要管理员身份运行 重点在最后一句 ...

  3. react综合案例-todolist、localstorage缓存数据

    1.工具类storage.js var app ={ set(key,value){ localStorage.setItem(key,JSON.stringify(value)); }, get(k ...

  4. Report List 报表开发

    1. Report List的输出定义 * ...NO STANDARD PAGE HEADING: 输出的报表不包含表头: * ...LINE-SIZE col : 输出的报表不包含表头: * .. ...

  5. Gin框架中文文档

    Gin 是一个 go 写的 web 框架,具有高性能的优点.官方地址:https://github.com/gin-gonic/gin 带目录请移步 http://xf.shuangdeyu.com/ ...

  6. Python学习之数据库

    9.6 表的查询 [结构]select distinct 字段1,字段2 from 表名 where 条件 group by 字段 having 筛选 order by 字段 limit 限制条数 [ ...

  7. python学习之函数(二)

    4.4.6 动态传参 动态传参是针对形参而言 1.动态位置参数 ​ 在静态位置参数时,我们知道,定义函数时有几个位置参数,调用时就必须给几个实参,不能多也不能少.有时候,实际应用过程中,参数往往不能固 ...

  8. LeetCode.965-单一二叉树(Univalued Binary Tree)

    这是悦乐书的第366次更新,第394篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第228题(顺位题号是965).如果树中的每个节点具有相同的值,则二叉树是单一的.当且仅 ...

  9. JS实现网页选取截屏 保存+打印 功能(转)

    源码地址: 1.1 确定截图选取范围 用户在开始截图后,需要在页面上选取一个截图范围,并且可以直观的看到,类似如下效果: image 我们的选取范围就是鼠标开始按下的那个点到鼠标拖动然后松开的那个点之 ...

  10. ios模拟器快捷键

    shift+cmd+h  返回桌面 cmd+5或者4或者3  可以直接调节大小 cmd+R运行项目 cmd+R弹出键盘 ios模拟器弹出键盘 在xcode6中, 模拟器中的键盘和电脑的键盘可以进行绑定 ...