[易学易懂系列|rustlang语言|零基础|快速入门|(7)|函数Functions与闭包Closure]
[易学易懂系列|rustlang语言|零基础|快速入门|(7)函数Functions与闭包Closure]
有意思的基础知识
函数Functions与闭包Closure
我们今天再来看看函数。
在Rust,函数由关键词:fn来定义。
如果有参数,必须定义参数的数据类型。
一般情况下,函数返回元组( tuple )类型,如果要返回特定的类型,一般要用符号:
->
来定义。
请看代码如下:
1.main函数:
fn main() {
println!("Hello, world!");
}
2.传递参数:
fn print_sum(a: i8, b: i8) {
println!("sum is: {}", a + b);
}
3.有返回值:
/ 01. Without the return keyword. Only last expression returns.
fn plus_one(a: i32) -> i32 {
a + 1
// There is no ending ; in the above line. It means this is an expression which equals to `return a+1;`
}
// 02. With the return keyword.
fn plus_two(a: i32) -> i32 {
return a + 2; // Returns a+2. But, this's a bad practice.
// Should use only on conditional returns, except in the last expression
}
4.函数指针,作为数据类型:
// 01. Without type declarations
let b = plus_one;
let c = b(5); //6
// 02. With type declarations
let b: fn(i32) -> i32 = plus_one;
let c = b(5); //6
闭包:
1.闭包,即匿名函数或lambda函数。
2.参数类型与返回值,是可选的。
闭包,一句话来说,就是特殊的函数。
首先我们来看看正常函数:
fn main() {
let x = 2;
println!("{}", get_square_value(x));
}
fn get_square_value(x: i32) -> i32 {
x * x
}
然后,我们用闭包来改写:
fn main() {
let x = 2;
let square = |x: i32| -> i32 { // Input parameters are passed inside | | and expression body is wrapped within { }
x * x
};
println!("{}", square(x));
}
进一步简写:
fn main() {
let x = 2;
let square = |x| x * x; // { } are optional for single-lined closures
println!("{}", square(x));
}
我们来简单对比一下函数与闭包,请看下面程序 :
fn main() {
// 函数形式:累加1.
fn function(i: i32) -> i32 {
i + 1
}
//闭包形式:完整定义
let closure_annotated = |i: i32| -> i32 { i + 1 };
//闭包形式:简化定义,利用rust的类型推导功能自动进行类型推导,这个更常用
let closure_inferred = |i| i + 1;
let i = 1;
// 调用函数与闭包
println!("function: {}", function(i));
println!("closure_annotated: {}", closure_annotated(i));
println!("closure_inferred: {}", closure_inferred(i));
//简单的闭包,只返回一个integer值,返回值 类型将如系统自动推导,即系统对1这个数字,自动判断,并推导出它是integer
let one = || 1;
println!("closure returning one: {}", one());
}
我们看到,函数定义更复杂。
我们再来看看下面的程序,比对一下:
fn main() {
let x = 4;//定义一个integer变量
// 函数形式:累加.
fn function(i: i32) -> i32 {
i + x//!!!!!这里编译报错!!!,函数不能从运行环境上获取其他变量!!!!
}
//闭包形式:完整定义
let closure_annotated = |i: i32| -> i32 { i + x };//用闭包可以从环境中获取x变量
//闭包形式:简化定义,这个更常用
let closure_inferred = |i| i + x;
let i = 1;
// 调用函数与闭包
println!("function: {}", function(i));
println!("closure_annotated: {}", closure_annotated(i));
println!("closure_inferred: {}", closure_inferred(i));
//简单的闭包,只返回一个integer值,返回值 类型将如系统自动推导,即系统对1这个数字,自动判断,并推导出它是integer
let one = || 1;
println!("closure returning one: {}", one());
}
编译器报错!
编译器详细错误信息为:
error[E0434]: can't capture dynamic environment in a fn item
--> src\main.rs:5:13
|
5 | i + x
| ^
|
= help: use the `|| { ... }` closure form instead
这里的编译器详细指出:函数不能动态从环境(当前运行环境或上下文)获得x,并提示用闭包。
我们再来看看如下代码:
fn main() {
use std::mem;
let color = "green";
// A closure to print `color` which immediately borrows (`&`) `color` and
// stores the borrow and closure in the `print` variable. It will remain
// borrowed until `print` is used the last time.
//
// `println!` only requires arguments by immutable reference so it doesn't
// impose anything more restrictive.
//定义一个简单的打印闭包,直接共享借用color变量,并把闭包绑定到print变量
let print = || println!("`color`: {}", color);
// Call the closure using the borrow.
//直接调用这个闭包(借用color)
print();
// `color` can be borrowed immutably again, because the closure only holds
// an immutable reference to `color`.
//color变量可以再次共享借用_reborrow,因为闭包print只是用了共享借用color
let _reborrow = &color;
print();
// A move or reborrow is allowed after the final use of `print`
//上面调用 了print()闭包后,这个color可以移动move(即转移其数据所有权)
let _color_moved = color;
let mut count = 0;
// A closure to increment `count` could take either `&mut count` or `count`
// but `&mut count` is less restrictive so it takes that. Immediately
// borrows `count`.
//
// A `mut` is required on `inc` because a `&mut` is stored inside. Thus,
// calling the closure mutates the closure which requires a `mut`.
//这里用可变借用变量count, 所以闭包也定义为可变的引用
let mut inc = || {
count += 1;
println!("`count`: {}", count);
};
// Call the closure using a mutable borrow.
//通过可变借用调用闭包
inc();
// The closure still mutably borrows `count` because it is called later.
// An attempt to reborrow will lead to an error.
// let _reborrow = &count;//这里如果共享借用将报错,因为count已经可变借用给闭包,再借用将通不过编译器
// ^ TODO: try uncommenting this line.
inc();
// The closure no longer needs to borrow `&mut count`. Therefore, it is
// possible to reborrow without an error
//这个语句下面,没有再调用inc()闭包的代码,即现在闭包没有再可变借用变更count,现在就可以用可变借用来借用count
let _count_reborrowed = &mut count;
// A non-copy type.
//定义一个引用变更或智能指针变量(非复制类型)
let movable = Box::new(3);
// `mem::drop` requires `T` so this must take by value. A copy type
// would copy into the closure leaving the original untouched.
// A non-copy must move and so `movable` immediately moves into
// the closure.
//定义一个闭包,把变量movable移动到闭包里,用方法mem::drop直接把变量内存释放
let consume = || {
println!("`movable`: {:?}", movable);
mem::drop(movable);
};
// `consume` consumes the variable so this can only be called once.
//调用闭包方consume直接把变量释放掉,所以这个闭包只能调用一次
consume();
// consume();//第二次调用会报错!
// ^ TODO: Try uncommenting this lines.
}
上面的代码用来以下两个标准库
以上代码打印结果为:
`color`: green
`color`: green
`count`: 1
`count`: 2
`movable`:
我们再来看看更复杂的例子,把闭包当作一个输入参数:
// A function which takes a closure as an argument and calls it.
// <F> denotes that F is a "Generic type parameter"
//定义一个函数apply,其参数为:F类型的闭包
fn apply<F>(f: F)
where
// The closure takes no input and returns nothing.
//这里指定F类型的闭包为FnOnce类型,即它只能调用一次
//这个闭包没有参数与没有返回值
F: FnOnce(),
{
// ^ TODO: Try changing this to `Fn` or `FnMut`.
//可以尝试改变这个F类型为 Fn(不可变函数)或FnMut(可变函数)
f();
}
// A function which takes a closure and returns an `i32`.
//定义一个函数apply_to_3,其参数为闭包,返回值为i32
fn apply_to_3<F>(f: F) -> i32
where
// The closure takes an `i32` and returns an `i32`.
//定义这个闭包类型为Fn(不可变函数),返回一个i32值
F: Fn(i32) -> i32,
{
f(3)
}
fn main() {
use std::mem;
let greeting = "hello";
// A non-copy type.
// `to_owned` creates owned data from borrowed one
//非复制类型
//to_owned()方法从一个借用变量中得到数据所有权
let mut farewell = "goodbye".to_owned();
// Capture 2 variables: `greeting` by reference and
// `farewell` by value.
//闭包获取两个变量:
//通过引用获取greeting
//通过值 获取farewell
let diary = || {
// `greeting` is by reference: requires `Fn`.
//greeting从引用获取值
println!("I said {}.", greeting);
// Mutation forces `farewell` to be captured by
// mutable reference. Now requires `FnMut`.
//farewell从可变引用得到数据值,所以是可修改的
farewell.push_str("!!!");
println!("Then I screamed {}.", farewell);
println!("Now I can sleep. zzzzz");
// Manually calling drop forces `farewell` to
// be captured by value. Now requires `FnOnce`.
//手动地释放farewell的资源
mem::drop(farewell);
};
// Call the function which applies the closure.
//把闭包diary当作一个参数传给函数apply
apply(diary);
// `double` satisfies `apply_to_3`'s trait bound
//定义一个闭包,乘以2
let double = |x| 2 * x;
println!("3 doubled: {}", apply_to_3(double));
}
以上结果为:
I said hello.
Then I screamed goodbye!!!.
Now I can sleep. zzzzz
3 doubled: 6
我们看到有一个where关键词,我们这里简单介绍下where的用法 。
之前,我们再来讨论一下特征变量的绑定,如下:
// Define a function `printer` that takes a generic type `T` which
// must implement trait `Display`.
//定义一个printer的函数,这个函数的参数T,必须实现特征Display
fn printer<T: Display>(t: T) {
println!("{}", t);
}
上面就是简单的特征变量的绑定,那T也可以绑定多个特征:
use std::fmt::{Debug, Display};
fn compare_prints<T: Debug + Display>(t: &T) {
println!("Debug: `{:?}`", t);
println!("Display: `{}`", t);
}
fn compare_types<T: Debug, U: Debug>(t: &T, u: &U) {
println!("t: `{:?}`", t);
println!("u: `{:?}`", u);
}
fn main() {
let string = "words";
let array = [1, 2, 3];
let vec = vec![1, 2, 3];
compare_prints(&string);
//compare_prints(&array);
// TODO ^ Try uncommenting this.
compare_types(&array, &vec);
}
那这个多个特征绑定定义,就可以用where语句来表示,更加清晰,如下两种定义是一样的:
impl <A: TraitB + TraitC, D: TraitE + TraitF> MyTrait<A, D> for YourType {}
// Expressing bounds with a `where` clause
//用where子语句来定义多个特征绑定定义
impl <A, D> MyTrait<A, D> for YourType where
A: TraitB + TraitC,
D: TraitE + TraitF {}
我们来看看例子:
use std::fmt::Debug;
trait PrintInOption {
fn print_in_option(self);
}
// Because we would otherwise have to express this as `T: Debug` or
// use another method of indirect approach, this requires a `where` clause:
impl<T> PrintInOption for T where
Option<T>: Debug {
// We want `Option<T>: Debug` as our bound because that is what's
// being printed. Doing otherwise would be using the wrong bound.
fn print_in_option(self) {
println!("{:?}", Some(self));
}
}
fn main() {
let vec = vec![1, 2, 3];
vec.print_in_option();
}
上面代码结果为:
Some([1, 2, 3])
以上就是Rust的函数与闭包的基本知识。
以上,希望对你有用。
如果遇到什么问题,欢迎加入:rust新手群,在这里我可以提供一些简单的帮助,加微信:360369487,注明:博客园+rust
[易学易懂系列|rustlang语言|零基础|快速入门|(7)|函数Functions与闭包Closure]的更多相关文章
- [易学易懂系列|rustlang语言|零基础|快速入门|(28)|实战5:实现BTC价格转换工具]
[易学易懂系列|rustlang语言|零基础|快速入门|(28)|实战5:实现BTC价格转换工具] 项目实战 实战5:实现BTC价格转换工具 今天我们来开发一个简单的BTC实时价格转换工具. 我们首先 ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(27)|实战4:从零实现BTC区块链]
[易学易懂系列|rustlang语言|零基础|快速入门|(27)|实战4:从零实现BTC区块链] 项目实战 实战4:从零实现BTC区块链 我们今天来开发我们的BTC区块链系统. 简单来说,从数据结构的 ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(26)|实战3:Http服务器(多线程版本)]
[易学易懂系列|rustlang语言|零基础|快速入门|(26)|实战3:Http服务器(多线程版本)] 项目实战 实战3:Http服务器 我们今天来进一步开发我们的Http服务器,用多线程实现. 我 ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(25)|实战2:命令行工具minigrep(2)]
[易学易懂系列|rustlang语言|零基础|快速入门|(25)|实战2:命令行工具minigrep(2)] 项目实战 实战2:命令行工具minigrep 我们继续开发我们的minigrep. 我们现 ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(24)|实战2:命令行工具minigrep(1)]
[易学易懂系列|rustlang语言|零基础|快速入门|(24)|实战2:命令行工具minigrep(1)] 项目实战 实战2:命令行工具minigrep 有了昨天的基础,我们今天来开始另一个稍微有点 ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(23)|实战1:猜数字游戏]
[易学易懂系列|rustlang语言|零基础|快速入门|(23)|实战1:猜数字游戏] 项目实战 实战1:猜数字游戏 我们今天来来开始简单的项目实战. 第一个简单项目是猜数字游戏. 简单来说,系统给了 ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(5)|生命周期Lifetime]
[易学易懂系列|rustlang语言|零基础|快速入门|(5)] Lifetimes 我们继续谈谈生命周期(lifttime),我们还是拿代码来说话: fn main() { let mut a = ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(22)|宏Macro]
[易学易懂系列|rustlang语言|零基础|快速入门|(22)|宏Macro] 实用知识 宏Macro 我们今天来讲讲Rust中强大的宏Macro. Rust的宏macro是实现元编程的强大工具. ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(21)|智能指针]
[易学易懂系列|rustlang语言|零基础|快速入门|(21)|智能指针] 实用知识 智能指针 我们今天来讲讲Rust中的智能指针. 什么是指针? 在Rust,指针(普通指针),就是保存内存地址的值 ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(20)|错误处理]
[易学易懂系列|rustlang语言|零基础|快速入门|(20)|错误处理] 实用知识 错误处理 我们今天来讲讲Rust中的错误处理. 很多语言都有自己的错误处理方式,比如,java是异常处理机制. ...
随机推荐
- KNN原理小结
K近邻法(K-nearest neighbors,KNN)既可以分类,也可以回归. KNN做回归和分类的区别在于最后预测时的决策方式.KNN做分类时,一般用多数表决法:KNN做回归时,一般用平均法. ...
- Nodejs 之非阻塞 I/O、异步、事件驱动
1.非阻塞 I/O var fs = require('fs'); console.log('); fs.readFile('mime.json',function (err,data) {//rea ...
- jquery 教程网
- JavaScript基础修炼(14)
目录 一. PCM格式是什么 二. 浏览器中的音频采集处理 三. 需求实现 方案1——服务端FFmpeg实现编码 方案2——ScriptProcessorNode手动处理数据流 参考文献 示例代码托管 ...
- CSS未完
CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素. 当浏览器读到一个样式表,它就会按照这个样式表来对文档进行格式化(渲染). CSS语法 CSS实例 ...
- Linux下面误删除文件使用extundelete工具恢复介绍
操作系统版本:CentOS release 6.4 (Final) 软件版本:extundelete-0.2.4.tar.bz2 PS:该软件恢复文件系统仅支持ext2/ext3/ext4 ...
- sql中循环的存储过程
), a2 bigint, a3 bigint) returns void as $$declare ii integer; begin II:; FOR ii IN a2..a3 LOOP INSE ...
- BZOJ 1303 中位数图 题解
题面 因为所求的是中位数,所以考虑改变原序列.把大于 b 的数全部变为 1,小于 b 的数变为 −1,等于 b 则为 0.问题就变为求存在几个包含 b的区间和为 0 . 根据乘法原理,我们枚举每一个l ...
- 父进程pid和子进程pid的大小关系
如果进程ID最大值没有达到系统进程数的上限,子进程比父进程ID大.但是如果进程ID达到上限,系统会分配之前分配但是已经退出的进程ID给新进程,这样有可能出现子进程ID比父进程小.
- fatal: refusing to merge unrelated histories问题解决
git中pull或merge时偶尔出现