一道很玄妙的题= =

我们考虑先考虑DP 那么有$f[x]=min(c+\sum f[y])$ $f[x]$表示覆盖x的子树和x->fa[x]的所有边最小代价 我们枚举一条边c覆盖的x->fa[x]并把它作为主链 f[y]就是除了主链以外的所有点的dp

接着考虑这个玩意怎么维护 我们可以在dp过程中直接把$\sum f[y]$放入$c$中 就变成了下面的这些操作

1.将终点在x的链删除。

2.记$sum=\sum f[y] y=son[x]$,son[i]子树内所有的链$c+=sum-f[son[i]]$,特别地,起点在i的链$c+=sum$。

3.取出f[x]是子树x中所有的链c的最小值。

显然这个可以数据结构维护掉

接下来我们考虑更为简洁的做法。

我们还是考虑每条向父亲的边都需要被覆盖。所以我们在覆盖x->fa[x]的时候我们是把所有的x的子树的链都合并起来然后选出一条覆盖这个边的。

直接用堆维护,这样的贪心显然是不对的。但是我们考虑用整体标记覆盖的方法。也就是取出堆顶v然后对堆中所有元素打上-v的标记 这样的话就可以选出别的链来替换掉当前的选择。这个方法非常有趣,一会写的另一道题也是用的标记覆盖的方法来维护。

然后我们在每条链的尽头需要把它删掉,实际上也不需要彻底删掉,我们只需要让它不能成为答案即可。这个在取堆顶的时候判断一下就可以了。

这个题很坑的地方就是在pop的时候需要把当前的标记下传掉,然而很多人都没有写这个地方,CF数据也较弱没有卡掉这个问题。在校内OJ上WA到自闭一度以为算法错了的我流下了悲伤的泪水TAT。

//Love and Freedom.
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
#define inf 20021225
#define ls(x) t[x].son[0]
#define rs(x) t[x].son[1]
#define N 300010
using namespace std;
int read()
{
int s=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<='') s=s*+ch-'',ch=getchar();
return s*f;
}
struct node{int fa,son[],dep; ll val,tag;}t[N];
struct edge{int to,lt;}e[N<<]; int in[N],cnt; ll ans;
void add(int x,int y)
{
e[++cnt].to=y; e[cnt].lt=in[x]; in[x]=cnt;
e[++cnt].to=x; e[cnt].lt=in[y]; in[y]=cnt;
}
void put(int x,ll v){if(!x) return; t[x].tag+=v,t[x].val+=v;}
void pushdown(int x)
{
if(!t[x].tag) return;
put(ls(x),t[x].tag); put(rs(x),t[x].tag);
t[x].tag=;
}
int merge(int x,int y)
{
if(!x||!y) return x|y;
if(t[y].val<t[x].val) swap(x,y);
pushdown(x); t[x].son[]=merge(t[x].son[],y);
t[ls(x)].fa=t[rs(x)].fa=x; t[x].fa=x;
if(t[rs(x)].dep>t[ls(x)].dep) swap(ls(x),rs(x));
t[x].dep=t[rs(x)].dep+; return x;
}
int rtn[N],top[N]; bool vis[N]; bool GG;
void dfs(int x,int f)
{
for(int i=in[x];i;i=e[i].lt)
{
int y=e[i].to; if(f==y) continue;
dfs(y,x); if(GG) return;
rtn[x]=merge(rtn[x],rtn[y]);
}
vis[x]=; if(x==) return;
while(vis[top[rtn[x]]]) pushdown(rtn[x]),rtn[x]=merge(ls(rtn[x]),rs(rtn[x]));
if(!rtn[x]){GG=; return;}
ans+=t[rtn[x]].val; put(rtn[x],-t[rtn[x]].val);
}
int main()
{
int n=read(),m=read();
for(int i=;i<n;i++){int x=read(),y=read(); add(x,y);}
for(int i=;i<=m;i++)
{
int x=read(); top[i]=read(); t[i].val=read();
rtn[x]=merge(rtn[x],i);
}
dfs(,);
printf("%lld\n",GG?-:ans);
return ;
}

CF671D Roads in Yusland的更多相关文章

  1. 【CF671D】Roads in Yusland(贪心,左偏树)

    [CF671D]Roads in Yusland(贪心,左偏树) 题面 洛谷 CF 题解 无解的情况随便怎么搞搞提前处理掉. 通过严密(大雾)地推导后,发现问题可以转化成这个问题: 给定一棵树,每条边 ...

  2. codesforces 671D Roads in Yusland

    Mayor of Yusland just won the lottery and decided to spent money on something good for town. For exa ...

  3. Codeforces 671 D. Roads in Yusland

    题目描述 Mayor of Yusland just won the lottery and decided to spent money on something good for town. Fo ...

  4. [Codeforces671D]Roads in Yusland

    [Codeforces671D]Roads in Yusland Tags:题解 题意 luogu 给定以1为根的一棵树,有\(m\)条直上直下的有代价的链,求选一些链把所有边覆盖的最小代价.若无解输 ...

  5. 【CF617D】Roads in Yusland

    [CF617D]Roads in Yusland 题面 蒯的洛谷的 题解 我们现在已经转化好了题目了,戳这里 那么我们考虑怎么求这个东西,我们先判断一下是否所有的边都能被覆盖,不行的话输出\(-1\) ...

  6. 【CodeForces】671 D. Roads in Yusland

    [题目]D. Roads in Yusland [题意]给定n个点的树,m条从下往上的链,每条链代价ci,求最少代价使得链覆盖所有边.n,m<=3*10^5,ci<=10^9,time=4 ...

  7. CF671D:Roads in Yusland

    n<=300000个点的树,给m<=300000条带权路径(ui,vi,保证vi是ui的祖先)求覆盖整棵树每条边的最小权和. 好题好姿势!直观的看到可以树形DP,f[i]表示把点i包括它爸 ...

  8. 【CF671D】 Roads in Yusland(对偶问题,左偏树)

    传送门 洛谷翻译 CodeForces Solution emmm,先引入一个对偶问题的概念 \(max(c^Tx|Ax \leq b)=min(b^Ty|A^Ty \ge c)\) 考虑这个式子的现 ...

  9. 题解-Codeforces671D Roads in Yusland

    Problem Codeforces-671D 题意概要:给定一棵 \(n\) 点有根树与 \(m\) 条链,链有费用,保证链端点之间为祖先关系,问至少花费多少费用才能覆盖整棵树(\(n-1\) 条边 ...

随机推荐

  1. mysqlbinlog读懂binlog

    binlog 报unknown variable 'default-character-set=utf8' 方法1: 在/etc/my.cnf 中将default-character-set=utf8 ...

  2. C# 防火墙操作之特定端口

    针对将特定端口加入到windows系统的防火墙中,使其允许或禁止通过防火墙.其大概思路是: /// <summary> /// 添加防火墙例外端口 /// </summary> ...

  3. 10.1 ‘The server's host key is not cached in the registry’

    10.1 ‘The server's host key is not cached in the registry’ This error message occurs when PuTTY conn ...

  4. <<Effective Java>> 第四十三条

    <<Effective Java>> 第四十三条:返回零长度的数组或者集合,而不是null 如果一个方法的返回值类型是集合或者数组 ,如果在方法内部需要返回的集合或者数组是零长 ...

  5. 测开之路八十九:HTML之图片处理

    <!--width.height设置图片尺寸 alt:当图片不能展示时,显示的内容 title:鼠标放上去时展示的内容--> <img src="../imges/img0 ...

  6. 安装node和npm和vue-cli和webpack-cli

    下载node(http://nodejs.cn/download/),安装时直接下一步,安装路径不要有汉字和空格查看node和npm是否安装成功,检查版本:node -vnpm -v 安装淘宝的cnp ...

  7. 浅谈Java反射机制 之 使用类的 属性、方法和构造函数

    前面两篇我们总结了Java反射机制如何获取类的字节码,如何获取构造函数,属性和方法, 这篇我们将进一步验证如何使用我们获取到的属性.方法以及构造函数 1.使用 反射 获取到的 属性 import ja ...

  8. log4net 配置文件配置方法

    转自:http://www.dozer.cc/2013/06/log4net-config-file-order/ 最近把项目中所有的日志都改成了 log4net ,同事也蠢蠢欲动,用起了 log4n ...

  9. JavaSE编码试题强化练习3

    1.给20块钱买可乐,每瓶可乐3块钱,喝完之后退瓶子可以换回1块钱,问最多可以喝到多少瓶可乐. public class TestCirculation { public static void ma ...

  10. windows10配置Docker容器独立IP地址互相通信

    Docker官方推荐我们通过端口映射的方式把Docker容器的服务提供给宿主机或者局域网其他容器使用.一般过程是: 1.Docker进程通过监听宿主机的某个端口,将该端口的数据包发送给Docker容器 ...