【GDOI2014模拟】网格
题目
某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m。现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过图示中直线左上方的点,即任何途径的点(x, y)都要满足x >= y,请问在这些前提下,到达B(n, m)有多少种走法。
分析
首先,我们知道:如果现在从(0, 0)点出发,只能沿着街道向正右方或者正上方行走时,到(n,m)点(n>=m)的方案数是\(C^{m}_{n+m}\)。
发现,任何途径的点(x, y)都要满足x>=y就是不经过粉色线x=y+1
有一条违法的路径:
我们把路径按照粉色线做个对称,
我们发现,到橙色点的路径都一一对应每一条违法路径,也就是说,违法路径的方案数就是到橙色点的方案数。
所以,合法方案数=随便走的方案数-违法方案数=\(C^{m}_{n+m}-C^{m-1}_{n+m}\)
注意:如果直接算可能会超时,要把式子简化,而且高精度要压位。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=10000;
using namespace std;
int f[20000],n,m,g[20000];
inline int times(int x)
{
memcpy(g,f,sizeof(g));
f[1]=0;
f[0]=g[0]+4;
for(int i=1;i<=f[0];i++)
{
f[i]+=g[i]*x;
f[i+1]=f[i]/mo;
f[i]-=f[i+1]*mo;
}
while(!f[f[0]] && f[0]>1)
f[0]--;
}
inline int div(int x)
{
memcpy(g,f,sizeof(g));
int k=0;
for(int i=g[0];i>=1;i--)
{
f[i]=(k*mo+g[i])/x;
k=(k*mo+g[i])-x*f[i];
}
f[0]=g[0];
while(!f[f[0]] && f[0]>1)
f[0]--;
}
int main()
{
scanf("%d%d",&n,&m);
f[0]=1;
f[1]=1;
int j=2;
for(int i=n+2;i<=n+m;i++)
{
if(j<=m)
{
if(i%j==0)
{
times(i/j);
j++;
}
else
times(i);
}
}
times(n+1-m);
for(int i=j;i<=m;i++)
{
div(i);
}
for(int i=f[0];i>=1;i--)
{
if(f[0]!=i)
printf("%04d",f[i]);
else
printf("%d",f[i]);
}
}
【GDOI2014模拟】网格的更多相关文章
- 【GDOI2014模拟】JZOJ2020年8月14日T2 网格
[GDOI2014模拟]JZOJ2020年8月14日T2 网格 题目 Time and Memory Limits Description 某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标 ...
- 【GDOI2014模拟】JZOJ2020年8月14日提高组 服务器
[GDOI2014模拟]JZOJ2020年8月14日提高组 服务器 题目 Time and Memory Limits Description 我们需要将一个文件复制到n个服务器上,这些服务器的编号为 ...
- jzoj 3431. 【GDOI2014模拟】网格
Description 某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m.现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过 ...
- GDOI2014模拟pty爬山(mountain)
pty爬山(mountain) 在Pty学校附近,有一座名之为岳之麓的高山.Pty很喜欢和(哔--)一起爬山.山的平面模型如下:山由一个顶点集:A1,A2-An给定,保证Ai的x单调递增.我们将Ai和 ...
- GDOI2014模拟 旅行【SPFA】
旅行(travel) 从前有一位旅者,他想要游遍天下所有的景点.这一天他来到了一个神奇的王国:在这片土地上,有n个城市,从1到n进行编号.王国中有m条道路,第i条道路连接着两个城市ai,bi,由于年代 ...
- 【GDOI2014模拟】服务器
前言 直到比赛最后几分钟,才发现60%数据居然是一个水dp,结果没打完. 题目 我们需要将一个文件复制到n个服务器上,这些服务器的编号为S1, S2, -, Sn. 首先,我们可以选择一些服务器,直接 ...
- 【GDOI2014模拟】Tree
题目 Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城市间能修公路,即有 ...
- 【GDOI2014模拟】雨天的尾巴
题目 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连 根拔起,以及田地里 ...
- [JZOJ3400] 【GDOI2014模拟】旅行
题目 题目大意 给你一个图,让你选择权值和最小的边,使得\(1\)和\(n\),\(2\)和\(n-1\),--,\(K\)和\(n-K+1\)联通. \(K\leq 4\) 思考历程 一看到这题就觉 ...
随机推荐
- Octavia health-manager 与 amphora 故障修复的实现与分析
目录 文章目录 目录 Health Manager 监控 amphora 健康状态 故障转移 故障迁移测试 Health Manager Health Manager - This subcompon ...
- 测开之路一百三十八:会话管理之session
session管理和使用,需要用到flask的session模块和设置安全码:app.secret_key 比如列表页和编辑功能只能给admin用 列表页 编辑页 添加session 登录成功时,把u ...
- linux python 修改环境变量 添加自定义模块路径
举一个很简单的例子,如果你发现一个包或者模块,明明是有的,但是会发生这样的错误: >>> from algorithm import *Traceback (most recent ...
- TCP的三次握手过程
TCP::传输控制协议(Transmission Control Protocol ) 是一种面相连接的.可靠的.基于字节流的 传输层通信协议. TCP是一种面相连接的协议.其显著的特点就是在 ...
- [转帖]深度解析区块链POW和POS的区别
深度解析区块链POW和POS的区别 Proof of Work 还有Proof of Stake 之前理解程了 state ... 股权的意思 还有 delegated proof of Stake ...
- so easy(并查集+unordered_map)
There are nn points in an array with index from 11 to nn, and there are two operations to those poin ...
- Spring aop 实例(转)
面向切面编程,有效的降低了代码之间的耦合性,易于维护:例如:我们习惯在代码中加上一些日志信息,在程序出错时方便快速查找找到问题,通常做法是在请求进入方法的时候打印日志,退出前打印日志,还有在出错时打印 ...
- 使用阿里ARouter路由实现组件化(模块化)开发流程
Android平台中对页面.服务提供路由功能的中间件,我的目标是 —— 简单且够用. 这是阿里对Arouter的定位,那么我们一起来梳理一下Arouter使用流程,和使用中我所遇到的一些问题! 先来看 ...
- unittest加载用例
diascover加载测试用例 1.discover方法里面有三个参数: -case_dir:这个是待执行用例的目录. -pattern:这个是匹配脚本名称的规则,test*.py意思是匹配test开 ...
- php设置错误级别
ini_set('display_errors', 1); error_reporting(E_ALL);