题目

某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m。现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过图示中直线左上方的点,即任何途径的点(x, y)都要满足x >= y,请问在这些前提下,到达B(n, m)有多少种走法。

分析

首先,我们知道:如果现在从(0, 0)点出发,只能沿着街道向正右方或者正上方行走时,到(n,m)点(n>=m)的方案数是\(C^{m}_{n+m}\)。

发现,任何途径的点(x, y)都要满足x>=y就是不经过粉色线x=y+1



有一条违法的路径:



我们把路径按照粉色线做个对称,

我们发现,到橙色点的路径都一一对应每一条违法路径,也就是说,违法路径的方案数就是到橙色点的方案数。

所以,合法方案数=随便走的方案数-违法方案数=\(C^{m}_{n+m}-C^{m-1}_{n+m}\)

注意:如果直接算可能会超时,要把式子简化,而且高精度要压位。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=10000;
using namespace std;
int f[20000],n,m,g[20000];
inline int times(int x)
{
memcpy(g,f,sizeof(g));
f[1]=0;
f[0]=g[0]+4;
for(int i=1;i<=f[0];i++)
{
f[i]+=g[i]*x;
f[i+1]=f[i]/mo;
f[i]-=f[i+1]*mo;
}
while(!f[f[0]] && f[0]>1)
f[0]--;
}
inline int div(int x)
{
memcpy(g,f,sizeof(g));
int k=0;
for(int i=g[0];i>=1;i--)
{
f[i]=(k*mo+g[i])/x;
k=(k*mo+g[i])-x*f[i];
}
f[0]=g[0];
while(!f[f[0]] && f[0]>1)
f[0]--;
}
int main()
{
scanf("%d%d",&n,&m);
f[0]=1;
f[1]=1;
int j=2;
for(int i=n+2;i<=n+m;i++)
{
if(j<=m)
{
if(i%j==0)
{
times(i/j);
j++;
}
else
times(i);
} }
times(n+1-m);
for(int i=j;i<=m;i++)
{
div(i);
}
for(int i=f[0];i>=1;i--)
{
if(f[0]!=i)
printf("%04d",f[i]);
else
printf("%d",f[i]);
}
}

【GDOI2014模拟】网格的更多相关文章

  1. 【GDOI2014模拟】JZOJ2020年8月14日T2 网格

    [GDOI2014模拟]JZOJ2020年8月14日T2 网格 题目 Time and Memory Limits Description 某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标 ...

  2. 【GDOI2014模拟】JZOJ2020年8月14日提高组 服务器

    [GDOI2014模拟]JZOJ2020年8月14日提高组 服务器 题目 Time and Memory Limits Description 我们需要将一个文件复制到n个服务器上,这些服务器的编号为 ...

  3. jzoj 3431. 【GDOI2014模拟】网格

    Description 某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m.现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过 ...

  4. GDOI2014模拟pty爬山(mountain)

    pty爬山(mountain) 在Pty学校附近,有一座名之为岳之麓的高山.Pty很喜欢和(哔--)一起爬山.山的平面模型如下:山由一个顶点集:A1,A2-An给定,保证Ai的x单调递增.我们将Ai和 ...

  5. GDOI2014模拟 旅行【SPFA】

    旅行(travel) 从前有一位旅者,他想要游遍天下所有的景点.这一天他来到了一个神奇的王国:在这片土地上,有n个城市,从1到n进行编号.王国中有m条道路,第i条道路连接着两个城市ai,bi,由于年代 ...

  6. 【GDOI2014模拟】服务器

    前言 直到比赛最后几分钟,才发现60%数据居然是一个水dp,结果没打完. 题目 我们需要将一个文件复制到n个服务器上,这些服务器的编号为S1, S2, -, Sn. 首先,我们可以选择一些服务器,直接 ...

  7. 【GDOI2014模拟】Tree

    题目 Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城市间能修公路,即有 ...

  8. 【GDOI2014模拟】雨天的尾巴

    题目 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连 根拔起,以及田地里 ...

  9. [JZOJ3400] 【GDOI2014模拟】旅行

    题目 题目大意 给你一个图,让你选择权值和最小的边,使得\(1\)和\(n\),\(2\)和\(n-1\),--,\(K\)和\(n-K+1\)联通. \(K\leq 4\) 思考历程 一看到这题就觉 ...

随机推荐

  1. Vue项目移动端滚动穿透问题

    概述 今天在做 Vue 移动端项目的时候遇到了滚动穿透问题,在网上查资料后,选取了我觉得最好的方法,记录下来供以后开发时参考,相信对其他人也有用. 上层无需滚动 如果上层无需滚动的话,直接屏蔽上层的 ...

  2. 分布式任务队列 Celery —— 详解工作流

    目录 目录 前文列表 前言 任务签名 signature 偏函数 回调函数 Celery 工作流 group 任务组 chain 任务链 chord 复合任务 chunks 任务块 mapstarma ...

  3. 数据科学家人才危机现象,是FOMO还是Silver?

    数据科学家人才危机现象,是FOMO还是Silver? 数据科学家的人才短缺和薪水高涨已经达到了顶板,未来还会持续下去吗? 在过去几年中,高级分析(#大数据#分析)空间一直经历着严重的FOMO(害怕错过 ...

  4. 【Linux开发】【Qt开发】配置tslibs触摸屏库环境设置调试对应的设备挂载点

    [Linux开发][Qt开发]配置tslibs触摸屏库环境设置调试对应的设备挂载点 标签(空格分隔): [Linux开发] [Qt开发] 比如: cat /dev/input/mice cat /de ...

  5. Git 创建分支并合并主分支

    首先,我们创建dev分支,然后切换到dev分支: $ git checkout -b dev(等价于 $ git branch dev $ git checkout dev ) Switched to ...

  6. Linux系统常用命令之top

    top - 06:58:37 up 7 days, 23:36, 2 users, load average: 0.00, 0.01, 0.05Tasks: 716 total, 1 running, ...

  7. 深入理解Linux-hostname

    当我觉得对Linux系统下修改hostname已经非常熟悉的时候,今天碰到了几个个问题,这几个问题给我好好上了一课,很多知识点,当你觉得你已经掌握的时候,其实你了解的还只是皮毛.技术活,切勿浅尝则止! ...

  8. MySql-Mysql技术内幕~SQL编程学习笔记(N)

    1._rowid 类似Oracle的rowid mysql> ; +-------+----+----------------+-------------+---------------+--- ...

  9. HTML中button标签点击实现页面跳转

    方法1:使用onclick事件 <input type="button" value="按钮" onclick="javascrtpt:wind ...

  10. JS的for循环包裹异步函数的问题

    有个循环,循环一个异步回调,为啥回调引用的循环值都是最后一步循环的循环值?然后,又有些时候无论什么循环值都得不到? var arr = [1,3,5,7,9]; var arrLength = arr ...