For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q ( ≤ Q ≤ ,) potential groups of cows and their heights ( ≤ height ≤ ,,). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

input

Line : Two space-separated integers, N and Q.
Lines .. N+: Line i+ contains a single integer that is the height of cow i
Lines N+.. N+ Q+: Two integers A and B ( ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

output

Lines .. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input


Sample output


题意:

给出n和q,给出n头奶牛的身高,q次询问,每次询问给出区间a、b,求出区间内的最大值和最小值之差

这里注意一下给出的样例:(解释一下输出)

给出的样例为1、7、3、4、2、5,表示区间1、2、3、4、5、6

思路:

线段树的模板题,求出区间内的最大值和最小值之差也就是查询已经建立好的线段树的最大值和最小值之差

 #include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<cmath>
#include<queue>
#include<stdlib.h>
typedef long long ll;
using namespace std;
const int N=; //需要开到四倍空间
int a[*N];//max
int b[*N];//min //每个父节点记录的是它下面的两个节点的最大值
void build(int L,int R,int i)
{
if(L==R)
{
scanf("%d",&a[i]);
b[i]=a[i];
return;
}
int mid=(L+R)>>;
build(L,mid,i<<);
build(mid+,R,i<<|);
a[i]=max(a[i<<],a[i<<|]);
b[i]=min(b[i<<],b[i<<|]);
//pushup(i)////每次传的时候把根节点也往下去寻找最大值
////比较其左右两个节点的大小,取最大值
//看题目给的需要求什么
} //query(aa,bb,1,n,1)
int querymax(int left,int right,int L,int R,int i)//a求区间最小值
{
if(left<=L&&right>=R)
return a[i];
int mid=(L+R)>>;
int ans=-;
if(left<=mid)
ans=max(ans,querymax(left,right,L,mid,i<<));
// else
if(right>mid)
ans=max(ans,querymax(left,right,mid+,R,i<<|));
return ans;
} //query(aa,bb,1,n,1)
int querymin(int left,int right,int L,int R,int i)//b求区间最大值
{
if(left<=L&&R<=right)
return b[i];
int mid=(L+R)>>;
int ans=0x3f3f3f3f;
if(left<=mid)
ans=min(ans,querymin(left,right,L,mid,i<<));
// else
if(right>mid)
ans=min(ans,querymin(left,right,mid+,R,i<<|));
return ans;
} int main()
{
int n,m;
while(~scanf("%d %d",&n,&m))
{
// memset(a,0,sizeof(a));
build(,n,);//传入最左端点,最右端点,根节点进行建树
//建树的过程中输入每一个节点
for(int i=; i<m; i++)
{
int aa,bb;
scanf("%d %d",&aa,&bb);
int kk=querymax(aa,bb,,n,)-querymin(aa,bb,,n,);
printf("%d\n",kk);
}
}
return ;
}

树状数组:

这个代码思路看注释的话好理解,但是代码不好理解

 #include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std; int a[],maxx[],minn[]; int lowbit(int x)
{
return x&(-x);
} int w(int L,int R)
{
int min1=a[R];
int max1=a[R];
while(L!=R)
{
for(R--; R-lowbit(R)>=L; R=R-lowbit(R))
{
min1=min(min1,minn[R]);
max1=max(max1,maxx[R]);
}
max1=max(max1,a[R]);
min1=min(min1,a[R]); }
return max1-min1; } int main()
{
std::ios::sync_with_stdio(false);
int n,q;
cin>>n>>q;
for(int i=; i<=n; i++)
{
cin>>a[i];
// update(i,a[i]);
maxx[i]=minn[i]=a[i];
for(int j=; j<lowbit(i); j*=)
{
maxx[i]=max(maxx[i],maxx[i-j]);
minn[i]=min(minn[i],minn[i-j]);
}
}
for(int i=; i<q; i++)
{
int aa,bb;
cin>>aa>>bb;
cout<<w(aa,bb)<<endl;
}
return ;
}

这个代码也A了,可以参考这个,类似树状数组的原模板,好理解,细节上变动一点就可以了

POJ-3264-Balanced Lineup-线段树模板题-查询区间内最大值和最小值之差的更多相关文章

  1. POJ 3264 Balanced Lineup 线段树 第三题

    Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...

  2. POJ 3264 Balanced Lineup 线段树RMQ

    http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...

  3. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  4. [POJ] 3264 Balanced Lineup [线段树]

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34306   Accepted: 16137 ...

  5. poj 3264 Balanced Lineup (RMQ算法 模板题)

    RMQ支持操作: Query(L, R):  计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...

  6. POJ 3264 Balanced Lineup (线段树)

    Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...

  7. POJ - 3264 Balanced Lineup 线段树解RMQ

    这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...

  8. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  9. POJ - 3264 线段树模板题 询问区间最大最小值

    这是线段树的一个模板题,给出一串数字,然后询问区间的最大最小值. 这个其实很好办,只需把线段树的节点给出两个权值,一个是区间的最小值,一个是区间的最大值,初始化为负无穷和正无穷,然后通过不断地输入节点 ...

随机推荐

  1. Laravel Route Resource 方法

    新增的 resource 方法将遵从 RESTful 架构为用户资源生成路由.该方法接收两个参数,第一个参数为资源名称,第二个参数为控制器名称. Route::resource('users', 'U ...

  2. leetcood学习笔记-102-二叉树的层次遍历

    题目描述: 方法一; class Solution(object): def levelOrder(self, root): """ :type root: TreeNo ...

  3. cocos2D-X 常见49种Action

    bool HelloWorld::init() { ////////////////////////////// // 1. super init first if ( !CCLayer::init( ...

  4. thinkphp入口文件

    ThinkPHP采用单一入口模式进行项目部署和访问,无论完成什么功能,一个应用都有一个统一(但不一定是唯一)的入口. 应该说,所有应用都是从入口文件开始的,并且不同应用的入口文件是类似的. 入口文件定 ...

  5. NOIp2018集训test-9-22(am/pm) (联考三day1/day2)

    szzq学长出的题,先orz一下. day1 倾斜的线 做过差不多的题,写在我自己的博客里,我却忘得一干二净,反而李巨记得清清楚楚我写了的. 题目就是要最小化这个东西 $|\frac{y_i-y_j} ...

  6. JVM内核-原理、诊断与优化学习笔记(七):性能监控工具

    文章目录 系统性能监控 系统性能监控- linux uptime top vmstat(虚拟内存统计) pidstat 系统性能监控 - windows 任务管理器 Perfmon Process E ...

  7. vs使用出现的一些常见错误(持续更新)

    vs2010编译出错时怎么会执行上一次的结果_百度知道https://zhidao.baidu.com/question/193018332.html

  8. LeetCode刷题笔记-回溯法-分割回文串

    题目描述: 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. 示例: 输入: "aab"输出:[ ["aa", ...

  9. Codeforces 1167D - Bicolored RBS

    题目链接:http://codeforces.com/problemset/problem/1167/D 题意:题目定义RBS,给你一个字符串,你要对其所有字符染色,使之分解为俩个RBS,使俩个RBS ...

  10. 2019 年百度之星·程序设计大赛 - 初赛一 C. Mindis 离散化+dijkstra

    题目传送门 题意:中文题面 思路: 先将所有题目给出的点离散化一下,得到一张n*m的网格,n和m最大都是400,所以我们只需要枚举每个加强的区域,将属于这个区域的边处理一下(所有横着的和竖着的边,暴力 ...