P3368 (模板)树状数组2
借这个题学新姿势,这个题需要利用差分才能AC,普通树状树有3个点过不了。
差分原理(参考题解区大佬):
一个例子,一组数据 $ a[] = { 1, 5, 4, 2, 3 } $,差分后得到 $ b[] = { 1, 4, -1, -2, 1 } $,其中 $ a_0 = 0, b_i = a_i - a_{i - 1} $,求原数组 $ a_n $ 某个位置 $ i $ 上的值。
由 $ b_i = a_i - a_{i - 1} \Rightarrow a_i = b_i + a_{i - 1} $,于是
$$ \left. \begin{aligned} a_i &= b_i + a_{i - 1} \\ a_{i - 1} &= b_{i - 1} + a_{i - 2} \\ \vdots \\ a_1 &= b_1 + a_0 \end{aligned} \right \} + $$
$ \Rightarrow a_i = b_i + b_{i - 1} + \cdots + b_1 + a_0 $ ,注意到 $ a_0 = 0 $,于是 $ a_i = \sum_{i = 1}^{n} b_i $ 。这样就求出了原数组位置上的值了。
然后再看看如何更新区间的值呢。
我们对 a 数组区间 2 ~ 4 每个值进行 +2 操作,得到 $ 1, 7, 6, 4, 3 $,我们对这个数组进行新的差分得到 $ b_n' = { 1 6 -1 -2 -1 } $ ,我们比较新的差分数组 $ b_n' $ 与 $ b_n $,发现只有 $ b_2',b_5' $ 上的值变了,$ b_2' = b_2 + 2, b_5' = b_5 - 2 $,可以验证,在任何区间 $ a[l,...,r] $ 做出 $ +x $ 更新,都有 $ b_l' = b_l + x , b_{r + 1}' = b_{r + 1} - x $ 。并且不论任何数组经过这样操作都有这样的特点,于是就有了代码中的 `dif()` 函数对区间进行更新。这样每次更新只用更新位置 $ b_l, b_{r + 1} $ 上的值,效率提高了许多。
#include <bits/stdc++.h>
#define MP make_pair
#define PB push_back
#define st first
#define nd second
#define rd third
#define rg register
#define FOR(i, a, b) for(int i =(a); i <=(b); ++i)
#define RE(i, n) FOR(i, 1, n)
#define FORD(i, a, b) for(int i = (a); i >= (b); --i)
#define REP(i, n) for(int i = 0;i <(n); ++i)
#define VAR(v, i) __typeof(i) v=(i)
#define FORE(i, c) for(VAR(i, (c).begin()); i != (c).end(); ++i)
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((int)(x).size())
using namespace std; #define lowbit(x) ((x) & (-x))
const int N = 500010;
int id[N];
void upd(int n, int k, int x)
{
while (k <= n) id[k] += x, k += lowbit(k);
}
void dif(int n, int l, int r, int x)
{
upd(n, l, x);
upd(n, r + 1, -x);
}
int sum(int k)
{
int ans = 0;
while (k > 0) ans += id[k], k -= lowbit(k);
return ans;
}
int org(int k)
{
return sum(k) - sum(k - 1);
}
int ask(int l, int r)
{
return sum(r) - sum(l - 1);
}
int main()
{
int n, m, k, x, opera, l, r, pre;
pre = 0;
cin >> n >> m;
FOR (i, 1, n)
{
cin >> x;
upd(n, i, x - pre); // 差分后更新到树状数组
pre = x;
}
while(m--)
{
cin >> opera;
switch(opera)
{
case 1: cin >> l >> r >> x; dif(n, l, r, x); break;
case 2: cin >> k; cout << sum(k) << endl; break;
}
}
return 0;
}
P3368 (模板)树状数组2的更多相关文章
- [模板] 树状数组 (C++ class)
闲来无事(其实是打了两三道树状数组题),写了个树状数组模板…… /* Author: hotwords */ template<typename tp> class BinTree { p ...
- HDU 1166 线段树模板&树状数组模板
HDU1166 上好的线段树模板&&树状数组模板 自己写的第一棵线段树&第一棵树状数组 莫名的兴奋 线段树: #include <cstdio> using nam ...
- 【洛谷 p3368】模板-树状数组 2(数据结构)
题目:已知一个数列,你需要进行下面两种操作:1.将某区间每一个数数加上x:2.求出某一个数的和. 解法:树状数组+前缀和优化.数组中每位存和前一位的数的差,这样区间修改只用改两位,单点询问就是求前缀和 ...
- 【洛谷 p3374】模板-树状数组 1(数据结构)
题目:已知一个数列,你需要进行下面两种操作:1.将某一个数加上x:2.求出某区间每一个数的和. 解法:树状数组求前缀和. #include<cstdio> #include<cstd ...
- POJ2299逆序对模板(树状数组)
题目:http://poj.org/problem?id=2299 只能相邻两个交换,所以交换一次只会减少一个逆序对.所以交换次数就是逆序对数. ps:原来树状数组还可以记录后边lowbit位的部分和 ...
- 洛谷.3374.[模板]树状数组1(CDQ分治)
题目链接 简易CDQ分治教程 //每个操作分解为一个有序数对(t,p),即(时间,操作位置),时间默认有序,用CDQ分治处理第二维 //对于位置相同的操作 修改优先于查询 //时间是默认有序的 所以可 ...
- 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)
题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...
- 洛谷P3368 【模板】树状数组 2
P3368 [模板]树状数组 2 102通过 206提交 题目提供者HansBug 标签 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 如题,已知一个数列,你需要进行下面两 ...
- P3368 【模板】树状数组 2(区间增减,单点查询)
P3368 [模板]树状数组 2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表 ...
- 模板【洛谷P3368】 【模板】树状数组 2
P3368 [模板]树状数组 2 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 树状数组区间加,单点查询. code: #include <i ...
随机推荐
- Spring核心知识
目录 Spring 概述 依赖注入 Spring beans Spring注解 Spring数据访问 Spring面向切面编程(AOP) Spring MVC Spring 概述 1. 什么是spri ...
- Mybatis- 基础知识
mybatis是一个java持久层框架,java中操作关系型 数据库用的是jdbc,mybatis是对jdbc的一个封装. 简介 iBATIS一词来源于"internet" ...
- C++-POJ2155-Matrix[数据结构][树状数组]
二维树状数组+叉分 区间修改转化为单点修改 单点查询本来就可视为区间查询 于是本题可解 PS:不知道为什么函数传参数,传的是变量就会出现奇奇怪怪的问题? 所以读入单独写了,还有就是循环的初始化硬是多定 ...
- 2.sleep和wait的区别:
sleep是Thread类的方法,wait是object(Java类库的老祖宗)的方法 sleep阻塞的线程在指定时间后,会转变为可执行状态:wait它要等待notify的唤醒 执行了sleep的线程 ...
- php设计模式之简单工厂模式代码实例
<?php header("Content-type:text/html;charset=utf-8"); /** * 共同接口 */ interface db { func ...
- CAD
文件另存为——Autocad.doc.SaveAs 一.前言 使用pyautocad编辑好cad图纸后,往往涉及到一个保存的问题,但是官方文档并未提及,所以只能自己来了,测试了好久,终于是找到了保 ...
- nginx配置访问黑名单-2
在Nginx服务器上屏蔽IP 1.查找要屏蔽的ip awk '{print $1}' nginx.access.log |sort |uniq -c|sort -n nginx.access.log ...
- 【13】堆排序 最小K个数
题目 输入整数数组 arr ,找出其中最小的 k 个数.例如,输入4.5.1.6.2.7.3.8这8个数字,则最小的4个数字是1.2.3.4. 收获 优先队列实现 (n1,n2)->n2-n1是 ...
- BLUE引擎检查放入装备的名称全名脚本
格式:CHECKDLGITEMNAME 名称 检查条件需要配合QUERYITEMDLG命令 ;========================================== [@main]#AC ...
- Java+Selenium自动化测试学习(一)
自动化测试基本流程 1.设置chromedriver的地址System.setProperty(); 2.创建一个默认浏览器ChromeDriver driver = new ChromeDriver ...