P5361 [SDOI2019]热闹又尴尬的聚会

出题人用脚造数据系列

只要将\(p\)最大的只求出来,\(q\)直接随便rand就能过

真的是

我们说说怎么求最大的\(p\),这个玩意具有很明显的单调性的吧

直接二分一下\(p\)的值,然后将其和他所以相连的所有度数\(>=p\)加进去,

可能最后有一些的点的实际度数\(<=p\)

我们就把他的贡献减掉,再出现再减

每个点只会入队一次

数据太弱,\(q\)直接随机吧

时间复杂度\(O(T(nlogn+rand)\)

#include<cstdio>
#include<cstring>
#include<cctype>
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cmath>
#include<queue>
#include<vector>
#pragma GCC optimize(2)
#define LL long long
#define mk make_pair
#define pii pair<int,int>
using namespace std;
const int N = 1e5 + 3;
const int M = 2e5 + 3;
struct edge{
int to;
int nxt;
}e[M << 2];
int num[N];
int n,m,T,dis,tot;
int head[N],d[N],need[N];
bool book[N],gg[N];
vector <int> G1,G2;
int p,q;
inline char nc(){
#define SIZE 100000
static char buf[SIZE],*p1 = buf+SIZE,*pend = buf+SIZE;
if(p1 == pend){
p1 = buf;pend = buf+fread(buf,1,SIZE,stdin);
if(p1 == pend) return -1;
}
return *p1++;
#undef SIZE
}
inline int read(){
int x = 0;int flag = 0;
char ch = nc();
while(!isdigit(ch)){
if(ch == '-') flag = 1;
ch = nc();
}
while(isdigit(ch)){
x = (x<<1) + (x<<3) + (ch^'0');
ch = nc();
}
if(flag) x = -x;
return x;
}
inline void add(int x,int y){
e[++tot].to = y;
e[tot].nxt = head[x];
head[x] = tot;
}
inline bool check(int mid){
queue <int> qq;
for(int i = 1;i <= n;++i){book[i] = 0;need[i] = 0;gg[i] = 0;}
for(int i = 1;i <= n;++i)
if(d[i] >= mid) qq.push(i);
while(!qq.empty()){
int k = qq.front();qq.pop();
for(int i = head[k];i;i = e[i].nxt){
int y = e[i].to;
if(d[y] < mid) continue;
need[y]++;
}
}
for(int i = 1;i <= n;++i) if(need[i] < mid) qq.push(i);
while(!qq.empty()){
int k = qq.front();qq.pop();
gg[k] = 1;
for(int i = head[k];i;i = e[i].nxt){
int y = e[i].to;
if(d[y] < mid) continue;
need[y]--;
if(need[y] < mid && !gg[y]) gg[y] = 1,qq.push(y);
}
}
bool flag = 0;
// cout << mid << endl;
// for(int i = 1;i <= n;++i) cout << need[i] << " ";cout << endl;
for(int i = 1;i <= n;++i) if(!gg[i] && need[i] >= mid) flag = 1;
if(flag){
G1.clear();
p = mid;
for(int i = 1;i <= n;++i) if(need[i] >= mid) G1.push_back(i);
}
return flag;
}
inline int work(){
int x;
random_shuffle(num + 1,num + n + 1);
int ans = 0;
x = num[1];
for(int i = 1;i <= n;++i) book[i] = 0,gg[i] = 0;
for(int i = head[x];i;i = e[i].nxt){
int y = e[i].to;
book[y] = 1;
}
gg[x] = 1,book[x] = 1;
//ans = 1;
for(int i = 1;i <= n;++i){
if(book[num[i]]) continue;
book[num[i]] = 1;
gg[num[i]] = 1;
ans++;
for(int j = head[num[i]];j;j = e[j].nxt){
int y = e[j].to;
if(book[y]) continue;
book[y] = 1;
}
}
if(ans) ans++;
return ans;
}
int main(){ T = read();
//cout << 1 << endl;
while(T--){
n = read(),m = read();
for(int i = 1;i <= n;++i) num[i] = i;
tot = 0;
for(int i = 1;i <= n;++i) head[i] = 0,d[i] = 0;
for(int i = 1;i <= m;++i){
int x = read(),y = read();
add(x,y);
add(y,x);
d[x]++,d[y]++;
}
//continue;
int l = 1,r = n,ans = 1;
while(l <= r){
int mid = (l + r) >> 1;
// cout << mid << endl;
if(check(mid)) ans = mid,l = mid + 1;
else r = mid - 1;
}
// cout << p <<endl;
// continue;
while(1){//cout << "GG" << endl;
q = work();
if(p >= n / (q + 1) && q >= n / (p + 1)){
G2.clear();
for(int i = 1;i <= n;++i)if(gg[i]) G2.push_back(i);
break;
}
}
// printf("p:%d q:%d\n",p,q);
printf("%d ",(int)G1.size());
for(int i = 0;i < (int)G1.size();++i) printf("%d ",G1[i]);printf("\n");
printf("%d ",(int)G2.size());
for(int i = 0;i < (int)G2.size();++i) printf("%d ",G2[i]);printf("\n");
}
return 0;
}

SDOI2019热闹又尴尬的聚会的更多相关文章

  1. [SDOI2019]热闹又尴尬的聚会 构造,贪心

    [SDOI2019]热闹又尴尬的聚会 链接 luogu loj 思路 第一问贪心?的从小到大删除入度最小的点,入度是动态的,打个标记. 当然不是最大独立集. 第二问第一问的顺序选独立集,不行就不要.选 ...

  2. 【题解】Luogu P5361 [SDOI2019]热闹又尴尬的聚会

    原题传送门 构造题. 明显p,q都越大越好 我们考虑每次取出度最小的点,加到尴尬聚会的集合中(因为把与它相邻的点全删了,不珂能出现认识的情况),把它自己和与自己相连的点从图上删掉(边也删掉),记下这个 ...

  3. [SDOI2019] 热闹又尴尬的聚会

    热闹度\(p\)子图中最小的度数,尴尬度\(q\)独立集大小,之间的约束 \[ \begin{aligned} \lfloor n/(p+1)\rfloor\le q &\rightarrow ...

  4. [洛谷P5361][SDOI2019]热闹又尴尬的聚会:构造题

    分析 构造方法 (截图自UOJ群) 可以使用std::set维护这个过程,不过据说可以做到\(O(n+m)\).. 正确性证明 题目中的要求等价于\((p+1)(q+1) > n\) 设每次找出 ...

  5. [SDOI2019]热闹又尴尬的聚会(图论+set+构造)

    据说原数据可以让复杂度不满的暴力O(Tn^2)过掉……O(Tn^2)方法类似于codeforces一场div2的E题 有一种比较好的方法:每次找出原图G中度最小的点加入q,然后将相邻的点加入新图G'. ...

  6. vijos2054 SDOI2019 热闹的聚会与尴尬的聚会

    题目链接 思路 首先观察题目最后的式子\(\lfloor \frac{n}{p + 1} \rfloor \le q\) 并且\(\lfloor \frac{n}{q+1} \rfloor \le p ...

  7. [luogu5361]热闹的聚会与尴尬的聚会

    由于两者是独立的,我们希望两者的$p$和$q$都最大 考虑最大的$p$,先全部邀请,此时要增大$p$显然必须要删去当前度数最小的点,不断删除之后将每一次度数最小值对答案取max即可 对于$q$也即最大 ...

  8. SDOI2019 Round2

    这鬼家伙已经咕了好久了-- SDOIR2的题目挺好玩的- 快速查询(???) 不难发现所有的操作都可以通过区间打Tag实现 那么可以维护两个标记\(a,b\)表示序列中的数为\(x\)时实际表示的值是 ...

  9. Solution Set - 《赏竹而格之》

    1.「GXOI / GZOI 2019」「洛谷 P5304」旅行者   Link & Submission.   经典二进制分组,没啥好说的. 2. 「SDOI 2019」「洛谷 P5361」 ...

随机推荐

  1. day39-Spring 17-Spring的JDBC模板:完成增删改的操作

    JdbcTemplate根DBUtils非常类似,你要是有非常多的Dao,你每一个Dao都需要写它 /*在Dao层注入JDBC模板*/ private JdbcTemplate jdbcTemplat ...

  2. Ubuntu 16.04下OLSR协议安装教程

    OLSR是根据MANET的要求,在传统的LS(Link state)协议的基础上优化的. OLSR中的关键概念是多点转播(MPRs),MPRs是在广播洪泛的过程中挑选的转发广播的节点.传统的链路状态协 ...

  3. POJ 1679The Unique MST

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  4. LayUI+Echart实现图表

    1.首先 定义一个容器存放图表  需要指定这个容器的大小 <div class="layui-card"> <div class="layui-card ...

  5. .Net Core,VUE,VS Code,Sql Sugar,Element UI学习笔记

    1..Net Core的目的是跨平台,并主要目标是作为服务端开发使用.从3.0开始,引入了Winfrom和WPF. 2..Net Core可以引用.Net Framework生成的dll和exe,不限 ...

  6. Linux Shell 教程

    Shell 教程 Shell 是一个C语言编写的程序,他是用户使用Linux的桥梁,Shell 既是一种命令语言,又是一种程序设计语言. Shell 是指一种应用程序,这个应用程序提供了一个界面用户通 ...

  7. 2019-7-1-VisualStudio-快速设置启动项目

    title author date CreateTime categories VisualStudio 快速设置启动项目 lindexi 2019-07-01 14:37:38 +0800 2019 ...

  8. Redis源码解析:02链表

    链表提供了高效的节点重排能力,以及顺序性的节点访问方式,因为Redis使用的C语言并没有内置这种数据结构,所以Redis自己实现了链表. 链表在Redis中的应用非常广泛,比如列表的底层实现之一就是链 ...

  9. 21Hash算法以及暴雪Hash

    一:哈希表简介 哈希表是一种查找效率极高的数据结构,理想情况下哈希表插入和查找操作的时间复杂度均为O(1),任何一个数据项可以在一个与哈希表长度无关的时间内计算出一个哈希值(key),然后在常量时间内 ...

  10. L05 Laravel 教程 - 电商实战

    https://laravel-china.org/courses/laravel-shop https://laravel-china.org/topics/13206/laravel-shop-c ...