深度学习——RNN
整理自:
https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1
- 原理
- RNN、LSTM、GRU区别
- LSTM防止梯度弥散和爆炸
- 引出word2vec
1.原理
在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward+Neural+Networks)。而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出。所以叫循环神经网络
2.RNN、LSTM、GRU区别
- RNN引入了循环的概念,但是在实际过程中却出现了初始信息随时间消失的问题,即长期依赖(Long-Term Dependencies)问题,所以引入了LSTM。
- LSTM:因为LSTM有进有出且当前的cell informaton是通过input gate控制之后叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸。推导forget gate,input gate,cell state, hidden information等因为LSTM有进有出且当前的cell informaton是通过input gate控制之后叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸的变化是关键,下图非常明确适合记忆:
- GRU是LSTM的变体,将忘记门和输入们合成了一个单一的更新门。
3. LSTM防止梯度弥散和爆炸
LSTM用加和的方式取代了乘积,使得很难出现梯度弥散。但是相应的更大的几率会出现梯度爆炸,但是可以通过给梯度加门限解决这一问题。
4.引出word2vec
这个也就是Word Embedding,是一种高效的从原始语料中学习字词空间向量的预测模型。分为CBOW(Continous Bag of Words)和Skip-Gram两种形式。其中CBOW是从原始语句推测目标词汇,而Skip-Gram相反。CBOW可以用于小语料库,Skip-Gram用于大语料库。
深度学习——RNN的更多相关文章
- 深度学习RNN实现股票预测实战(附数据、代码)
背景知识 最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work.于是就花了两个晚上的时间学习了下代码,顺便把 ...
- 深度学习--RNN,LSTM
一.RNN 1.定义 递归神经网络(RNN)是两种人工神经网络的总称.一种是时间递归神经网络(recurrent neural network),另一种是结构递归神经网络(recursive neur ...
- 用CNTK搞深度学习 (二) 训练基于RNN的自然语言模型 ( language model )
前一篇文章 用 CNTK 搞深度学习 (一) 入门 介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火 ...
- 深度学习之 rnn 台词生成
深度学习之 rnn 台词生成 写一个台词生成的程序,用 pytorch 写的. import os def load_data(path): with open(path, 'r', encoding ...
- 【深度学习篇】---CNN和RNN结合与对比,实例讲解
一.前述 CNN和RNN几乎占据着深度学习的半壁江山,所以本文将着重讲解CNN+RNN的各种组合方式,以及CNN和RNN的对比. 二.CNN与RNN对比 1.CNN卷积神经网络与RNN递归神经网络直观 ...
- 深度学习之循环神经网络(RNN)
循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络,适合用于处理视频.语音.文本等与时序相关的问题.在循环神经网络中,神经元不但可以接收其他神经元 ...
- [深度学习]理解RNN, GRU, LSTM 网络
Recurrent Neural Networks(RNN) 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义 ...
- 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...
- 深度学习:浅谈RNN、LSTM+Kreas实现与应用
主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学习框 ...
随机推荐
- Directx11教程(9) 增加一个TimerClass类
原文:Directx11教程(9) 增加一个TimerClass类 在上篇教程代码的基础上,我们增加一个TimerClass类,这个类的功能很简单,就是可以计算相邻2帧的时间差.利用这个时间 ...
- MySQL非安装版安装
1 数据库的打开方式(非安装版本) 1.解压mysql-5.7.12-winx64.zip到一个路径上没有空格没有汉字的目录中 2.复制my-default.ini重命名为my.ini 3.命令行进入 ...
- 配置一个Oracle共享服务器进程环境需要哪两项参数
SHARED_SERVERS和DISPATCHERS. PROTOCOL(pro或prot): 调度程序要监听的网络协议.这是唯一必需的属性 ADDRESS(ADD或者ADDR): 指定调度程序正在上 ...
- Person Re-identification 系列论文笔记(七):PCB+RPP
Beyond Part Models: Person Retrieval with Refined Part Pooling Sun Y, Zheng L, Yang Y, et al. Beyond ...
- 最短路-Dijkstra算法整理
维基说的很全面:https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm 理解: 先设置访问数组vis[]和距离数组dist[],开始时把源点(sour ...
- myeclipse的最有用的设置
1 取消Myeclipse的自动文件验证(卡傻的原因) Windows –> Perferences –>Myeclipse –> Validation,保留manual(手动) ...
- java把Word文件转成html的字符串返回出去
1.需求是把前端上传的word文件解析出来,生成html的字符串返回给前端去展示,Word里面的图片可以忽略不显示,所以这段代码去掉了解析图片的代码 package com.lieni.core.ut ...
- TIJ——Chapter Twelve:Error Handling with Exception
Exception guidelines Use exceptions to: Handle problems at the appropriate level.(Avoid catching exc ...
- MyBatis的基本用法
MyBatis MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis 可以使 ...
- MySQL性能分析, mysql explain执行计划详解
MySQL性能分析 MySQL性能分析及explain用法的知识是本文我们主要要介绍的内容,接下来就让我们通过一些实际的例子来介绍这一过程,希望能够对您有所帮助. 1.使用explain语句去查看分析 ...