一、Linux

lucene: 全文检索引擎的架构

solr: 基于lucene的全文搜索服务器,实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面。

推荐一个大数据学习群 142974151每天晚上20:10都有一节【免费的】大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享,

二、Hadoop

HDFS: 分布式存储系统,包含NameNode,DataNode。NameNode:元数据,DataNode。DataNode:存数数据。

yarn: 可以理解为MapReduce的协调机制,本质就是Hadoop的处理分析机制,分为ResourceManager NodeManager。

MapReduce: 软件框架,编写程序。

Hive: 数据仓库 可以用SQL查询,可以运行Map/Reduce程序。用来计算趋势或者网站日志,不应用于实时查询,需要很长时间返回结果。

HBase: 数据库。非常适合用来做大数据的实时查询。Facebook用Hbase存储消息数据并进行消息实时的分析

ZooKeeper: 针对大型分布式的可靠性协调系统。Hadoop的分布式同步等靠Zookeeper实现,例如多个NameNode,active standby切换。

Sqoop: 数据库相互转移,关系型数据库和HDFS相互转移

Mahout: 可扩展的机器学习和数据挖掘库。用来做推荐挖掘,聚集,分类,频繁项集挖掘。

Chukwa: 开源收集系统,监视大型分布式系统,建立在HDFS和Map/Reduce框架之上。显示、监视、分析结果。

Ambari: 用于配置、管理和监视Hadoop集群,基于Web,界面友好。

三、Cloudera

Cloudera Manager: 管理 监控 诊断 集成

Cloudera CDH:(Cloudera's Distribution,including Apache Hadoop) Cloudera对Hadoop做了相应的改变,发行版本称为CDH。

Cloudera Flume: 日志收集系统,支持在日志系统中定制各类数据发送方,用来收集数据。

Cloudera Impala: 对存储在Apache Hadoop的HDFS,HBase的数据提供直接查询互动的SQL。

Cloudera hue: web管理器,包括hue ui,hui server,hui db。hue提供所有CDH组件的shell界面的接口,可以在hue编写mr。

四、机器学习/R

R: 用于统计分析、绘图的语言和操作环境,目前有Hadoop-R

mahout: 提供可扩展的机器学习领域经典算法的实现,包括聚类、分类、推荐过滤、频繁子项挖掘等,且可通过Hadoop扩展到云中。

五、storm

Storm: 分布式,容错的实时流式计算系统,可以用作实时分析,在线机器学习,信息流处理,连续性计算,分布式RPC,实时处理消息并更新数据库。

Kafka: 高吞吐量的分布式发布订阅消息系统,可以处理消费者规模的网站中的所有动作流数据(浏览,搜索等)。相对Hadoop的日志数据和离线分析,可以实现实时处理。目前通过Hadoop的并行加载机制来统一线上和离线的消息处理

Redis: 由c语言编写,支持网络、可基于内存亦可持久化的日志型、key-value型数据库。

六、Spark

Scala: 一种类似java的完全面向对象的编程语言。

jblas: 一个快速的线性代数库(JAVA)。基于BLAS与LAPACK,矩阵计算实际的行业标准,并使用先进的基础设施等所有的计算程序的ATLAS艺术的实现,使其非常快。

Spark: Spark是在Scala语言中实现的类似于Hadoop MapReduce的通用并行框架,除了Hadoop MapReduce所具有的优点,但不同于MapReduce的是job中间输出结果可以保存在内存中,从而不需要读写HDFS,因此Spark能更好的适用于数据挖掘与机器学习等需要迭代的MapReduce算法。可以和Hadoop文件系统并行运作,用过Mesos的第三方集群框架可以支持此行为。

Spark SQL: 作为Apache Spark大数据框架的一部分,可用于结构化数据处理并可以执行类似SQL的Spark数据查询

Spark Streaming:一种构建在Spark上的实时计算框架,扩展了Spark处理大数据流式数据的能力。

Spark MLlib: MLlib是Spark是常用的机器学习算法的实现库,目前(2014.05)支持二元分类,回归,聚类以及协同过滤。同时也包括一个底层的梯度下降优化基础算法。MLlib以来jblas线性代数库,jblas本身以来远程的Fortran程序。

Spark GraphX: GraphX是Spark中用于图和图并行计算的API,可以在Spark之上提供一站式数据解决方案,可以方便且高效地完成图计算的一整套流水作业。

Fortran: 最早出现的计算机高级程序设计语言,广泛应用于科学和工程计算领域。

BLAS: 基础线性代数子程序库,拥有大量已经编写好的关于线性代数运算的程序。

LAPACK: 著名的公开软件,包含了求解科学与工程计算中最常见的数值线性代数问题,如求解线性方程组、线性最小二乘问题、特征值问题和奇异值问题等。

ATLAS: BLAS线性算法库的优化版本。

Spark Python: Spark是由scala语言编写的,但是为了推广和兼容,提供了java和python接口。

六、Python

Python: 一种面向对象的、解释型计算机程序设计语言。

七、云计算平台

Docker: 开源的应用容器引擎

kvm: (Keyboard Video Mouse)

openstack:  开源的云计算管理平台项目

大数据学习路线,来qun里分享干货,的更多相关文章

  1. 大数据学习路线copy自淘宝

    一.hadoop视频学习(入门到精通) 二.数据挖掘(入门到精通) 三.Hadoop学习路线 1.开发前期准备 首先,如果你没有Java和Linux基础,建议你先简单学一下这两门课程,此宝贝里面都为你 ...

  2. 大数据学习路线:Zookeeper集群管理与选举

    大数据技术的学习,逐渐成为很多程序员的必修课,因为趋势也是因为自己的职业生涯.在各个技术社区分享交流成为很多人学习的方式,今天很荣幸给我们分享一些大数据基础知识,大家可以一起学习! 1.集群机器监控 ...

  3. 大数据学习路线之linux系统基础搭建

    学习大数据是必须掌握一定Linux知识的,工欲善其事,必先利其器.在学习之前,首先需要搭建Linux系统,本节将讲解VMware Workstation的安装和CentOS 7系统的安装. 1.2.1 ...

  4. 大数据学习路线分享-Hbase shell的基本操作完整流程

    HBase的命令行工具,最简单的接口,适合HBase管理使用,可以使用shell命令来查询HBase中数据的详细情况.安装完HBase之后,启动hadoop集群(利用hdfs存储),启动zookeep ...

  5. 大数据学习路线:Hadoop集群同步技术分享

    今天给大家带来的技术分享是——Hadoop集群同步. 一.同步方式 选择一个机器,作为时间服务器(这里选择hadoop01),所有的机器与这台集群时间进行定时的同步,比如,每隔十分钟,同步一次时间. ...

  6. 写给需要的Javaer-大数据学习路线篇

    已经更新100+篇~ 关注公众号,BAT大神带你飞~ 听说你还在写Java,看Spring,看Dubbo,今天SpringCloud, 明天Dubbo3.X新版本... 10个开发9个半在写Java后 ...

  7. java学习路线(好资源大家分享)

    对于入门java将近两年的时间,曾经迷惘过,一直想知道java的具体学习路线,看过了许许多多的java经验分享的帖子,评论,以及其他各种培训机构所谓的学习路线,发现没有一个符合我个人需求的学习路线,根 ...

  8. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

  9. 大数据学习:storm流式计算

    Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: 1.Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 2.由于Storm的处理组件都是分布式的, ...

随机推荐

  1. jQuery随机抽取数字号代码

    html <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta ...

  2. python 操作redis数据

    python 操作redis 各种类型的数据 # encoding:utf-8 import redis import time def main(): """ redi ...

  3. Dubbo---zookeeper 注册中心---xml配置

    1.项目结构(maven项目) 2.pom <?xml version="1.0" encoding="UTF-8"?> <project x ...

  4. Python:验证码识别

    说明:此验证方法很弱,几乎无法识别出正确的验证码  

  5. 概率——17icpc西安

    不知道为什么是这样子的.. #include<bits/stdc++.h> using namespace std; int m,n; int main(){ while(scanf(&q ...

  6. Vlan的相关知识点收纳

    Q.思科Vlan的上限个数是多少? VLAN的范围:根据平台和软件版本不同,Cisco交换机最多支持4096个VLAN.VLAN号共有4096个,0-4095    0,4095:这两个号保留,仅限系 ...

  7. 转载-NX11.0二次开发新增Spreadsheet相关类的用法!

    这几天搜NX对EXCAL读取写入相关的开发内容,发现唐工写了一篇关于NX11对EXCAL操作的文章.让我知道NX11新增了对EXCAL操作相关的类,以前NX里是没有的.我以前都是用OLE方式去做,没用 ...

  8. PHP fpassthru() 函数

    定义和用法 fpassthru() 函数输出文件指针处的所有剩余数据. 该函数将给定的文件指针从当前的位置读取到 EOF,并把结果写到输出缓冲区. 语法 fpassthru(file) 参数 描述 f ...

  9. nteract 使用教程

    安装 直接去官网下载 一路回车 官网 建立python虚拟环境 和我们平时一样 不同的是在建立完之后 要安装一个kernel Using Python3 with pip and a virtual ...

  10. kuangbin专题十三-基础计算几何

    链接:https://cn.vjudge.net/contest/68968 POJ 2318 TOYS 题意:m个玩具落在n+1个区间,给你玩具的坐标,问每个区间有多少玩具. 思路:叉积的简单应用, ...