广度优先搜索(Breadth First Search, BFS)

BFS算法实现的一般思路为:

// BFS
void BFS(int s){
queue<int> q; // 定义一个队列
q.push(s); // 队首元素入队 while (!q.empty()){
// 取出队首元素top
// 访问队首元素
// 将队首元素出队
// 将top的下一层结点中未曾入队的结点全部入队,并设置为已入队
}
}

常见题型一:

代码实现:

 #include <stdio.h>
#include <queue>
using namespace std; const int maxn = ; // 位置结构体
struct node{
int x, y; // 位置(x, y)
}Node; int n, m; // 矩阵大小为 n * m
int matrix[maxn][maxn]; // 01 矩阵
bool inq[maxn][maxn] = { false }; // 记录位置 (x, y) 是否已入过队
int X[] = { , , , - }; // 增量数组
int Y[] = { , -, , }; // 判断坐标(x, y)是否需要访问
bool judge(int x, int y){
// 越界访问false
if (x >= m || x < || y >= n || y < ){
return false;
}
// 当前位置为0或者已经入过队也返回false
if (matrix[x][y] == || inq[x][y] == true){
return false;
}
// 否则返回 true
return true;
} // BFS函数访问位置(x, y)所在的块,将该块的所有'1'的inq都设置为 true
void BFS(int x, int y){
// 定义一个队列
queue<node> Q;
// 队首元素入队
Node.x = x, Node.y = y;
Q.push(Node); // 队列不为空则一直循环
while (!Q.empty()){
// 取出队首元素
node top = Q.front();
// 访问队首元素
// 弹出队首元素
Q.pop();
// 将这个元素所相连的坐标设置为已入队
for (int i = ; i < ; i++){
int newX = top.x + X[i];
int newY = top.y + Y[i];
if (judge(newX, newY)){
Node.x = newX, Node.y = newY;
// 将所有相连坐标入队
Q.push(Node);
inq[newX][newY] = true; // 设置位置[newX, newY]为已入过队
}
}
}
} int main()
{
// 读取输入
scanf("%d %d", &m, &n);
for (int i = ; i < m; i++){
for (int j = ; j < n; j++){
scanf("%d", &matrix[i][j]); // 读入 01 矩阵
}
int ans = ; // 存放块数
// 遍历矩阵
for (int x = ; x < m; x++){
for (int y = ; j < n; y++){
// 入过位置为1 且没有入过队则计数器加一
if (matrix[x][y] == && inq[x][y] == false){
ans++;
BFS(x, y);
}
}
}
} printf("%d\n", ans); return ;
}

常见题型二:

代码实现:

 #include <stdio.h>
#include <queue>
using namespace std; const int maxn = ;
struct node{
int x, y;
int step; // step 为从起点到终点位置最少的步数(即层数)
}S, T, temp; int m, n; // n 为行, m位列
char maze[maxn][maxn]; // 迷宫信息
bool inq[maxn][maxn] = { false };
int X[] = { , , , - };
int Y[] = { , -, , }; // 检测位置(x, y)是否有效
bool test(int x, int y){
if (x >= m || x < || y >= n || y < )
return false;
if (maze[x][y] == '*' || inq[x][y] == true)
return false;
return true;
} int BFS(){
queue<node> q;
q.push(S); while (!q.empty()){
node top = q.front();
if (top.x == T.x && top.y == T.y)
return top.step;
q.pop();
for (int i = ; i < ; i++){
int newX = top.x + X[i];
int newY = top.y + Y[i];
if (test(newX, newY)){
// 创建一个新结点
node temp;
temp.x = newX, temp.y = newY;
temp.step = top.step + ;
q.push(temp);
inq[newX][newY] = true;
}
}
}
return -;
} int main()
{
scanf("%d %d", &m, &n);
for (int i = ; i < m; i++){
for (int j = ; j < n; j++){
maze[i][j] = getchar();
}
maze[i][n] = '\0';
}
scanf("%d %d %d %d", &S.x, &S.y, &T.x, &T.y);
S.step = ;
printf("%d\n", BFS()); return ;
}

广度优先搜索(Breadth First Search, BFS)的更多相关文章

  1. 数据结构之 图论---基于邻接矩阵的广度优先搜索遍历(输出bfs遍历序列)

    数据结构实验图论一:基于邻接矩阵的广度优先搜索遍历 Time Limit: 1000MS Memory limit: 65536K 题目描述 给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索( ...

  2. javascript实现的图数据结构的广度优先 搜索(Breadth-First Search,BFS)和深度优先搜索(Depth-First Search,DFS)

    最后一例,搞得快.三天之内走了一次.. 下一步,面象对像的javascript编程. function Dictionary(){ var items = {}; this.has = functio ...

  3. 算法与数据结构基础 - 广度优先搜索(BFS)

    BFS基础 广度优先搜索(Breadth First Search)用于按离始节点距离.由近到远渐次访问图的节点,可视化BFS 通常使用队列(queue)结构模拟BFS过程,关于queue见:算法与数 ...

  4. [SOJ] 图的广度优先搜索

    Time Limit: 1sec    Memory Limit:256MB Description 读入图的邻接矩阵以及一个顶点的编号(图中顶点的编号为从1开始的连续正整数.顶点在邻接矩阵的行和列上 ...

  5. (转)广度优先搜索BFS和深度优先搜索DFS

    1. 广度优先搜索介绍 广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS. 它的思想是:从图中 ...

  6. 关于宽搜BFS广度优先搜索的那点事

    以前一直知道深搜是一个递归栈,广搜是队列,FIFO先进先出LILO后进后出啥的.DFS是以深度作为第一关键词,即当碰到岔道口时总是先选择其中的一条岔路前进,而不管其他岔路,直到碰到死胡同时才返回岔道口 ...

  7. 常用算法2 - 广度优先搜索 & 深度优先搜索 (python实现)

    1. 图 定义:图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合. 简单点的说:图由节点和边组成.一 ...

  8. 【js数据结构】图的深度优先搜索与广度优先搜索

    图类的构建 function Graph(v) {this.vertices = v;this.edges = 0;this.adj = []; for (var i = 0; i < this ...

  9. [MIT6.006] 13. Breadth-First Search (BFS) 广度优先搜索

    一.图 在正式进入广度优先搜索的学习前,先了解下图: 图分为有向图和无向图,由点vertices和边edges构成.图有很多应用,例如:网页爬取,社交网络,网络传播,垃圾回收,模型检查,数学推断检查和 ...

随机推荐

  1. cf999E (强联通分量模板题)

    给出n个点m条边的有向图,问至少添加多少条边使得任何点都可以从s点出发可达 #include<bits/stdc++.h> #define forn(i, n) for (int i = ...

  2. 走进MEasy的世界:基于STM32MP1的IOT参考设计

    前言:在万物互联快速发展的趋势下,板卡处理器性能.内存大小.接口外设等都是人们非常关心的硬件参数,但是如何让硬件的作用实现它的功能最大化,一套完善的软件支持尤为重要. 背景:随着HTML5技术的发展, ...

  3. 2019sdqdCSP-J游记

    特别鸣谢:Miku -------------------------- 中午上了车,和ljx坐在一块.太阳是多么好啊,我们在看着刚出的tg题,cmz找不到了准考证,sbl在临时打印准考证 等到好不容 ...

  4. 【Android】LitePal的基础

    一.环境配置 LitePal 在GitHub地址为:https://github.com/LitePalFramework/LitePal 我们使用起来也很方便,直接在gradle中配置即可. 如果你 ...

  5. NoSQLBooster如何MongoDB的部分文档从一个集合拷贝到另外一个集合中

    假设MongoDB数据库中存有collection_A和collection_B两个集合,如下图所示: (一)先从集合collection_A中拷贝选择的文档 打开collection_A,看到目前有 ...

  6. Tutorial: Publishing additional services for printing

    Complexity:IntermediateData Requirement:Use your own data There may be occasions when you need to pu ...

  7. 每个Web开发者都应该知道的SOLID原则

    面向对象的编程并不能防止难以理解或不可维护的程序.因此,Robert C. Martin 制定了五项指导原则,使开发人员很容易创建出可读性强且可维护的程序.这五项原则被称为 S.O.L.I.D 原则. ...

  8. 2020 CCPC Wannafly Winter Camp Day1 Div.1&amp F

    #include<bits/stdc++.h> #define forn(i, n) for (int i = 0; i < int(n); i++) #define fore(i, ...

  9. [Java]对double变量进行四舍五入,并保留小数点后位数

    1.功能 将double类型变量进行四舍五入,并保留小数点后位数 2.代码 import java.math.BigDecimal; import java.math.RoundingMode; im ...

  10. [Python]爬取首都之窗百姓信件网址id python 2020.2.13

    经人提醒忘记发网址id的爬取过程了, http://www.beijing.gov.cn/hudong/hdjl/com.web.consult.consultDetail.flow?original ...