HZOI20190814 B 不等式
不等式
题目大意:求解满足$L \leqslant(S×x)mod M\leqslant R$的x最小正整数解,无解输出-1
几种部分分:
$L==R$,就是$ex_gcd$;
解在$1e6$以内:搜索
但是卓越的我们一定是要写满分代码的,所以我们上迷一样的正解
观察这个式子:$L \leqslant(S×x)mod M\leqslant R$
我们把它化一下:$L \leqslant Sx-My\leqslant R$
以y为主元:$-L \leqslant My-Sx\leqslant -R$
化成取模的形式:$-L mod S \leqslant (M×y)mod S \leqslant -R mod S$
我们要保证L,R是正数,则-L变为(-L%S+S)%S,R同理
那我们就可以愉快的dfs了
设4个参数,S,M,L,R,判断边界:
$L==0,return 0$
$L>R||L>=M||S%M==0$ $return -1$
然后$S=S%M$,这时$x=\frac{L-1}{S}+1$,判断x是否满足
这是$y=dfs(M,S,-R,-L)$,如果$y==-1$,不合法
若合法,则$x=\frac{R+M×y}{S}$,判断是否合法,合法返回x,不合法返回-1。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define int long long
using namespace std;
int t,m,s,l,r;
int dfs(int m,int s,int l,int r){
if(l>r||l>=m||s%m==0) return -1;
if(l==0) return 0;
s%=m;
int x=(l-1)/s+1;
if(s*x<=r) return x;
int y=dfs(s,m,(-r%s+s)%s,(-l%s+s)%s);
if(y==-1) return -1;
x=(r+m*y)/s;
if(s*x-m*y>=l) return x;
return -1;
}
signed main(){
scanf("%lld",&t);
while(t--){
scanf("%lld%lld%lld%lld",&m,&s,&l,&r);
printf("%lld\n",dfs(m,s,l,min(r,m-1)));
}
return 0;
}
HZOI20190814 B 不等式的更多相关文章
- [学习笔记]四边形不等式优化DP
形如$f[i][j]=min{f[i][k]+f[k+1][j]}+w[i][j]$的方程中, $w[\;][\;]$如果同时满足: ①四边形不等式:$w[a][c]+w[b][d]\;\leq\;w ...
- hiho #1223 不等式
#1223 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定n个关于X的不等式,问最多有多少个成立. 每个不等式为如下的形式之一: X < C X ...
- hdu 3506 Monkey Party 区间dp + 四边形不等式优化
http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...
- BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- Carath\'eodory 不等式
(Carath\'eodory 不等式) 利用 Scharwz 引理及线性变换, 证明: 若函数 $f(z)$ 在圆 $|z|<R$ 内全纯, 在 $|z|\leq R$ 上连续, $M(r)$ ...
- 石子合并(四边形不等式优化dp) POJ1160
该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...
- UVa 10003 (可用四边形不等式优化) Cutting Sticks
题意: 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用. 分析: d(i, j)表示切割第i个切点到第j个切点这段所需的最小费用.则有d(i, j) = ...
- hihocoder #1223 : 不等式 水题
#1223 : 不等式 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://hihocoder.com/problemset/problem/1223 ...
- 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...
随机推荐
- day14 python02---字符串
day02 数字相关的转换 bin() 2进制oct() 8进制hex() 16进制 字符串 定义:它是一个有序的字符的集合,用于存储和表示基本的文本信息,‘’或“”或‘’‘ ’‘’中间包含的内容称之 ...
- duilib库分析3.DUILibxml配置
我这里是借用网友colin3dmax整理的关于duilib的分析哈,感谢他的分享,我觉得很有必要贴出来让大家都学习观摩下 DUILibxml配置项根节点 子类 属性 ...
- CF459E Pashmak and Graph (Dag dp)
传送门 解题思路 \(dag\)上\(dp\),首先要按照边权排序,然后图都不用建直接\(dp\)就行了.注意边权相等的要一起处理,具体来讲就是要开一个辅助数组\(g[i]\),来避免同层转移. 代码 ...
- NOI2001 炮兵阵地 洛谷2704
题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P&quo ...
- SqlSugar入门级教程+实例 (.net core下的)
官方参考:http://www.codeisbug.com/Doc/8 前言:这应该是目前最好用的ORM框架之一了,而且支持.net core,网上除了官方文档其他参考就少了点,自己整理了一下,大致包 ...
- eax,ebx,ecx,edx,esi,edi,ebp,esp寄存器的作用
位的寄存器.如果用C语言来解释,可以把这些寄存器当作变量看待. 比方说:add eax,-2 ; //可以认为是给变量eax加上-2这样的一个值. 位寄存器有多种用途,但每一个都有"专长 ...
- Spring有关面试问题
问题清单: 什么是Spring框架?Spring框架有哪些主要模块? 使用Spring框架有什么好处? 什么是控制反转(IOC)?什么是依赖注入? 请解释下Spring中的IOC? BeanFacto ...
- sql还原数据库时候改变数据库名
需求:在做图书馆数据整合时候,由于有两个校区,用的是分离开的同一个数据库,数据库名字都一样的,现在我要整合在一起,我的想法是把两个数据库先还原到我本地,用写好的脚本整合到一起.所以,我还原两个数据库时 ...
- 封装一个C#日志类Loger
public class Loger { /// <summary> /// 写入日志 /// </summary> /// <param name="cont ...
- new linux setup, yum command
7 yum list 9 cd /etc/yum.repos.d/ 55 history | grep yum 56 yum -y list screen* 57 yum -y instal ...